Jillian M Buriak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6973235/publications.pdf

Version: 2024-02-01

401 papers 13,360 citations

28242 55 h-index 23514 111 g-index

429 all docs

429 docs citations

429 times ranked 14889 citing authors

#	Article	IF	CITATIONS
1	Organometallic Chemistry on Silicon and Germanium Surfaces. Chemical Reviews, 2002, 102, 1271-1308.	23.0	1,653
2	Desorption–ionization mass spectrometry on porous silicon. Nature, 1999, 399, 243-246.	13.7	1,046
3	Chemical and Biological Applications of Porous Silicon Technology. Advanced Materials, 2000, 12, 859-869.	11.1	433
4	Assembly of aligned linear metallic patterns on silicon. Nature Nanotechnology, 2007, 2, 500-506.	15.6	351
5	Lewis Acid Mediated Functionalization of Porous Silicon with Substituted Alkenes and Alkynes. Journal of the American Chemical Society, 1998, 120, 1339-1340.	6.6	339
6	Lewis Acid Mediated Hydrosilylation on Porous Silicon Surfaces. Journal of the American Chemical Society, 1999, 121, 11491-11502.	6.6	312
7	Organometallic chemistry on silicon surfaces: formation of functional monolayers bound through Si〓C bonds. Chemical Communications, 1999, , 1051-1060.	2.2	297
8	Using Cylindrical Domains of Block Copolymers To Self-Assemble and Align Metallic Nanowires. ACS Nano, 2008, 2, 489-501.	7.3	293
9	Exciton-Mediated Hydrosilylation on Photoluminescent Nanocrystalline Silicon. Journal of the American Chemical Society, 2001, 123, 7821-7830.	6.6	244
10	Photopatterned Hydrosilylation on Porous Silicon. Angewandte Chemie - International Edition, 1998, 37, 3257-3260.	7.2	239
11	How To Optimize Materials and Devices <i>via</i> Design of Experiments and Machine Learning: Demonstration Using Organic Photovoltaics. ACS Nano, 2018, 12, 7434-7444.	7.3	219
12	Controlled Electroless Deposition of Noble Metal Nanoparticle Films on Germanium Surfaces. Nano Letters, 2002, 2, 1067-1071.	4.5	203
13	Block Copolymer Templated Chemistry for the Formation of Metallic Nanoparticle Arrays on Semiconductor Surfaces. Chemistry of Materials, 2007, 19, 5090-5101.	3.2	192
14	Derivatized Mesoporous Silicon with Dramatically Improved Stability in Simulated Human Blood Plasma. Advanced Materials, 1999, 11, 1505-1507.	11.1	179
15	Cylindrical \hat{I}^2 -Sheet Peptide Assemblies. Journal of the American Chemical Society, 1998, 120, 8949-8962.	6.6	178
16	Best Practices for Reporting on Heterogeneous Photocatalysis. ACS Applied Materials & Discrete Reporting on Heterogeneous Photocatalysis. ACS Applied Materials & Discrete Reporting on Heterogeneous Photocatalysis. ACS Applied Materials & Discrete Reporting on Heterogeneous Photocatalysis. ACS Applied Materials & Discrete Reporting on Heterogeneous Photocatalysis. ACS Applied Materials & Discrete Reporting on Heterogeneous Photocatalysis. ACS Applied Materials & Discrete Reporting on Heterogeneous Photocatalysis. ACS Applied Materials & Discrete Reporting on Heterogeneous Photocatalysis. ACS Applied Materials & Discrete Reporting Reporting Reporting Reporting Reporting Reporting Reporting Report Reporting Report Re	4.0	163
17	Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells. Solar Energy Materials and Solar Cells, 2013, 110, 98-106.	3.0	159
18	Lead-Free Perovskite Solar Cells. ACS Energy Letters, 2017, 2, 904-905.	8.8	158

#	Article	IF	Citations
19	Synthesis and SERS Properties of Nanocrystalline Gold Octahedra Generated from Thermal Decomposition of HAuCl4 in Block Copolymers. Advanced Materials, 2006, 18, 3233-3237.	11.1	149
20	Fast Assembly of Ordered Block Copolymer Nanostructures through Microwave Annealing. ACS Nano, 2010, 4, 7021-7029.	7.3	144
21	Catalytic olefin hydrogenation using N-heterocyclic carbene–phosphine complexes of iridium. Chemical Communications, 2002, , 2518-2519.	2.2	138
22	Illuminating Silicon Surface Hydrosilylation: An Unexpected Plurality of Mechanisms. Chemistry of Materials, 2014, 26, 763-772.	3.2	132
23	Specific detection of proteins using photonic crystal waveguides. Optics Express, 2008, 16, 15949.	1.7	130
24	Electroless Nanoparticle Film Deposition Compatible with Photolithography, Microcontact Printing, and Dip-Pen Nanolithography Patterning Technologies. Nano Letters, 2002, 2, 1369-1372.	4.5	129
25	Hydrogermylation of Alkenes and Alkynes on Hydride-Terminated Ge(100) Surfaces. Langmuir, 2000, 16, 7737-7741.	1.6	128
26	Silver Nano-Inukshuks on Germanium. Nano Letters, 2005, 5, 815-819.	4.5	126
27	Nanoscale Patterning of Two Metals on Silicon Surfaces Using an ABC Triblock Copolymer Template. Journal of the American Chemical Society, 2006, 128, 5877-5886.	6.6	124
28	Sn–Bi–Sb alloys as anode materials for sodium ion batteries. Journal of Materials Chemistry A, 2017, 5, 9661-9670.	5.2	124
29	Nanopatterning of Alkynes on Hydrogen-Terminated Silicon Surfaces by Scanning Probe-Induced Cathodic Electrografting. Journal of the American Chemical Society, 2003, 125, 11334-11339.	6.6	123
30	Redox Flow Batteries: How to Determine Electrochemical Kinetic Parameters. ACS Nano, 2020, 14, 2575-2584.	7.3	118
31	Block Copolymer-Templated Chemistry on Si, Ge, InP, and GaAs Surfaces. Journal of the American Chemical Society, 2005, 127, 8932-8933.	6.6	117
32	The search for new hydrogenation catalyst motifs based on N-heterocyclic carbene ligands. Inorganica Chimica Acta, 2006, 359, 2786-2797.	1.2	117
33	Rolling Silver Nanowire Electrodes: Simultaneously Addressing Adhesion, Roughness, and Conductivity. ACS Applied Materials & Samp; Interfaces, 2013, 5, 12663-12671.	4.0	113
34	Reporting Performance in Organic Photovoltaic Devices. ACS Nano, 2013, 7, 4708-4714.	7.3	110
35	Hydride Abstraction Initiated Hydrosilylation of Terminal Alkenes and Alkynes on Porous Silicon. Langmuir, 2002, 18, 2971-2974.	1.6	107
36	Methylammonium Cation Dynamics in Methylammonium Lead Halide Perovskites: A Solid-State NMR Perspective. Journal of Physical Chemistry A, 2018, 122, 1560-1573.	1.1	103

#	Article	IF	CITATIONS
37	Heteroepitaxial Growth of Gold Nanostructures on Silicon by Galvanic Displacement. ACS Nano, 2009, 3, 2809-2817.	7.3	101
38	Nanopatterning via Solvent Vapor Annealing of Block Copolymer Thin Films. Chemistry of Materials, 2017, 29, 176-188.	3.2	94
39	Common Pitfalls of Catalysis Manuscripts Submitted to <i>Chemistry of Materials</i> . Chemistry of Materials, 2018, 30, 3599-3600.	3.2	93
40	Silicon-Carbon Bonds on Porous Silicon Surfaces. Advanced Materials, 1999, 11, 265-267.	11,1	92
41	\hat{l}^2 -SnSb for Sodium Ion Battery Anodes: Phase Transformations Responsible for Enhanced Cycling Stability Revealed by In Situ TEM. ACS Energy Letters, 2018, 3, 1670-1676.	8.8	90
42	Anodic and cathodic electrografting of alkynes on porous siliconâ€. Chemical Communications, 1999, , 2479-2480.	2.2	87
43	Studies on Catalytic Asymmetric Imine Hydrogenation in the Presence of Reverse Micelles:Â Enhanced Enantioselectivity due to Surfactant Head Group Coordination. Organometallics, 1996, 15, 3161-3169.	1.1	82
44	Stable Inverted Polymer/Fullerene Solar Cells Using a Cationic Polythiophene Modified PEDOT:PSS Cathodic Interface. Advanced Functional Materials, 2010, 20, 2404-2415.	7.8	82
45	Surface Area Characterization of Obliquely Deposited Metal Oxide Nanostructured Thin Films. Langmuir, 2010, 26, 4368-4376.	1.6	81
46	Molecular Layer Deposition of Thiolâ^Ene Multilayers on Semiconductor Surfaces. Langmuir, 2010, 26, 1232-1238.	1.6	71
47	Solution-Processed Zinc Phosphide (α-Zn ₃ P ₂) Colloidal Semiconducting Nanocrystals for Thin Film Photovoltaic Applications. ACS Nano, 2013, 7, 8136-8146.	7.3	70
48	Metal Mediated Reactions on Porous Silicon Surfaces. Journal of Solid State Chemistry, 1999, 147, 251-258.	1.4	68
49	Indium tin oxide nanopillar electrodes in polymer/fullerene solar cells. Nanotechnology, 2011, 22, 085706.	1.3	67
50	Three Methods for Stabilization and Functionalization of Porous Silicon Surfaces via Hydrosilylation and Electrografting Reactions. Physica Status Solidi A, 2000, 182, 109-115.	1.7	64
51	Best Practices for the Reporting of Colloidal Inorganic Nanomaterials. Chemistry of Materials, 2015, 27, 4911-4913.	3.2	64
52	Deconvoluting the Mechanism of Microwave Annealing of Block Copolymer Thin Films. ACS Nano, 2014, 8, 3979-3991.	7.3	61
53	Screening of Heterogeneous Multimetallic Nanoparticle Catalysts Supported on Metal Oxides for Mono-, Poly-, and Heteroaromatic Hydrogenation Activity. ACS Catalysis, 2012, 2, 1524-1534.	5.5	60
54	In-Operando Study of the Effects of Solvent Additives on the Stability of Organic Solar Cells Based on PTB7-Th:PC ₇₁ BM. ACS Energy Letters, 2019, 4, 464-470.	8.8	60

#	Article	IF	CITATIONS
55	Role of Interfacial Layers in Organic Solar Cells: Energy Level Pinning versus Phase Segregation. ACS Applied Materials & Samp; Interfaces, 2016, 8, 18238-18248.	4.0	57
56	New Approaches Toward the Formation of Silicon-Carbon Bonds on Porous Silicon. Comments on Inorganic Chemistry, 2002, 23, 179-203.	3.0	56
57	Work Function Control of Interfacial Buffer Layers for Efficient and Airâ€6table Inverted Lowâ€8andgap Organic Photovoltaics. Advanced Energy Materials, 2012, 2, 361-368.	10.2	56
58	Block Copolymer Templated Etching on Silicon. Nano Letters, 2007, 7, 464-469.	4.5	55
59	Automated Defect and Correlation Length Analysis of Block Copolymer Thin Film Nanopatterns. PLoS ONE, 2015, 10, e0133088.	1.1	55
60	Metallic Nanostructures via Static Plowing Lithography. Nano Letters, 2003, 3, 1043-1047.	4.5	53
61	Trapping Silicon Surface-Based Radicals. Langmuir, 2006, 22, 6214-6221.	1.6	52
62	Biocompatible Carbohydrate-Functionalized Stainless Steel Surfaces: A New Method For Passivating Biomedical Implants. ACS Applied Materials & Samp; Interfaces, 2011, 3, 1601-1612.	4.0	52
63	Sb–Si Alloys and Multilayers for Sodium-Ion Battery Anodes. ACS Applied Energy Materials, 2019, 2, 2205-2213.	2.5	52
64	High surface area silicon materials: fundamentals and new technology. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2006, 364, 217-225.	1.6	51
65	Size and Surface Effects of Silicon Nanocrystals in Graphene Aerogel Composite Anodes for Lithium Ion Batteries. Chemistry of Materials, 2018, 30, 7782-7792.	3.2	50
66	Synthesis and Patterning of Gold Nanostructures on InP and GaAs via Galvanic Displacement. Small, 2005, 1, 1076-1081.	5.2	49
67	Recycling Is Not Always Good: The Dangers of Self-Plagiarism. ACS Nano, 2012, 6, 1-4.	7.3	49
68	Toward a Mechanistic Understanding of Exciton-Mediated Hydrosilylation on Nanocrystalline Silicon. Journal of the American Chemical Society, 2012, 134, 489-497.	6.6	49
69	Phase-Pure Crystalline Zinc Phosphide Nanoparticles: Synthetic Approaches and Characterization. Chemistry of Materials, 2014, 26, 1925-1935.	3.2	49
70	Oxygen Evolution Catalyzed by Nickel–Iron Oxide Nanocrystals with a Nonequilibrium Phase. ACS Applied Materials & Company: Interfaces, 2015, 7, 19755-19763.	4.0	49
71	Electrostatic Layer-by-Layer Assembly of CdSe Nanorod/Polymer Nanocomposite Thin Films. ACS Applied Materials & Description (2018), 2, 219-229.	4.0	47
72	Photoluminescence of porous silicon surfaces stabilized through Lewis acid mediated hydrosilylation. Journal of Luminescence, 1998, 80, 29-35.	1.5	45

#	Article	IF	CITATIONS
73	Preparation and functionalization of hydride terminated porous germanium. Chemical Communications, 2000, , 1669-1670.	2.2	45
74	Probing the Mechanisms of Enantioselective Hydrogenation of Simple Olefins with Chiral Rhodium Catalysts in the Presence of Anions. Chemistry - A European Journal, 2000, 6, 139-150.	1.7	43
75	Catalytic Stamp Lithography for Sub-100 nm Patterning of Organic Monolayers. Journal of the American Chemical Society, 2008, 130, 17656-17657.	6.6	42
76	Dehydrogenative Silane Coupling on Silicon Surfaces via Early Transition Metal Catalysis. Inorganic Chemistry, 2006, 45, 1096-1102.	1.9	41
77	Rapid Assembly of Nanolines with Precisely Controlled Spacing from Binary Blends of Block Copolymers. Macromolecules, 2011, 44, 9752-9757.	2.2	41
78	Bulk Heterojunction Organic Photovoltaics Based on Carboxylated Polythiophenes and PCBM on Glass and Plastic Substrates. Advanced Functional Materials, 2011, 21, 1816-1826.	7.8	41
79	Nano and Plants. ACS Nano, 2022, 16, 1681-1684.	7.3	41
80	Challenges and Opportunities in Designing Perovskite Nanocrystal Heterostructures. ACS Energy Letters, 2020, 5, 2253-2255.	8.8	39
81	From Molecules to Surfaces: Radical-Based Mechanisms of Si–S and Si–Se Bond Formation on Silicon. Journal of the American Chemical Society, 2015, 137, 9730-9738.	6.6	38
82	Donor–Acceptor Small Molecules for Organic Photovoltaics: Single-Atom Substitution (Se or S). ACS Applied Materials & Company (1997) Applied & Company (1997) Applied Materials & Company (1	4.0	38
83	Characterization of the Interface of Gold and Silver Nanostructures on InP and GaAs Synthesized via Galvanic Displacement. Journal of Physical Chemistry C, 2008, 112, 12291-12298.	1.5	37
84	UV-Initiated Hydrosilylation on Hydrogen-Terminated Silicon (111): Rate Coefficient Increase of Two Orders of Magnitude in the Presence of Aromatic Electron Acceptors. Langmuir, 2012, 28, 16285-16293.	1.6	37
85	ABH-Glycan Microarray Characterizes ABO Subtype Antibodies: Fine Specificity of Immune Tolerance After ABO-Incompatible Transplantation. American Journal of Transplantation, 2016, 16, 1548-1558.	2.6	36
86	Specific detection of proteins using nanomechanical resonators. Sensors and Actuators B: Chemical, 2008, 134, 613-617.	4.0	35
87	Epitaxial Growth of Nanostructured Gold Films on Germanium via Galvanic Displacement. ACS Applied Materials & Displacement. ACS Applied Materials	4.0	35
88	Density Doubling of Block Copolymer Templated Features. Nano Letters, 2012, 12, 264-268.	4.5	34
89	Nickel/Iron Oxide Nanocrystals with a Nonequilibrium Phase: Controlling Size, Shape, and Composition. Chemistry of Materials, 2014, 26, 4796-4804.	3.2	34
90	Thienylsilane-Modified Indium Tin Oxide as an Anodic Interface in Polymer/Fullerene Solar Cells. ACS Applied Materials & Samp; Interfaces, 2009, 1, 279-288.	4.0	33

#	Article	IF	Citations
91	Finely Tailored Performance of Inverted Organic Photovoltaics through Layer-by-Layer Interfacial Engineering. ACS Applied Materials & Engineering. Engineering & Engineering.	4.0	33
92	Redox Flow Batteries. ACS Energy Letters, 2017, 2, 1368-1369.	8.8	33
93	An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino. Chemistry of Materials, 2019, 31, 8577-8581.	3.2	31
94	Transition metal mediated surface modification of porous silicon. Tetrahedron, 2001, 57, 5131-5136.	1.0	30
95	Electrochemically driven organic monolayer formation on silicon surfaces using alkylammonium and alkylphosphonium reagents. Surface Science, 2005, 590, 154-161.	0.8	29
96	Screening of Bimetallic Heterogeneous Nanoparticle Catalysts for Arene Hydrogenation Activity under Ambient Conditions. Inorganic Chemistry, 2010, 49, 2706-2714.	1.9	29
97	Elucidating the Surface Chemistry of Zinc Phosphide Nanoparticles Through Ligand Exchange. Chemistry of Materials, 2014, 26, 4653-4661.	3.2	29
98	Effects of Organic Monolayer Formation on Electrochemiluminescence Behavior of Porous Silicon. Chemistry of Materials, 2000, 12, 2151-2156.	3.2	28
99	CHEMISTRY: Chemistry with Nanoscale Perfection. Science, 2004, 304, 692-693.	6.0	28
100	C ₆₀ Fullerene Nanocolumns–Polythiophene Heterojunctions for Inverted Organic Photovoltaic Cells. ACS Applied Materials & Distribution (1998) amp; Interfaces, 2011, 3, 1887-1894.	4.0	28
101	Self-assembly of carboxylated polythiophene nanowires for improved bulk heterojunction morphology in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 11354.	6.7	28
102	Conversion of Bilayers of PS- <i>b</i> -PDMS Block Copolymer into Closely Packed, Aligned Silica Nanopatterns. ACS Nano, 2013, 7, 5595-5606.	7.3	28
103	Diamond Surfaces: Just Big Organic Molecules?. Angewandte Chemie - International Edition, 2001, 40, 532-534.	7.2	26
104	Analysis of porosity in porous silicon using hyperpolarized 129Xe two-dimensional exchange experiments. Solid State Nuclear Magnetic Resonance, 2006, 29, 85-89.	1.5	26
105	Nanoscale Patterning of Organic Monolayers by Catalytic Stamp Lithography: Scope and Limitations. ACS Applied Materials & Diterfaces, 2009, 1, 2711-2720.	4.0	25
106	Nanoscale Plasmonic Stamp Lithography on Silicon. ACS Nano, 2015, 9, 2184-2193.	7.3	25
107	UV-Initiated Si–S, Si–Se, and Si–Te Bond Formation on Si(111): Coverage, Mechanism, and Electronics. Journal of Physical Chemistry C, 2018, 122, 13803-13814.	1.5	25
108	Preferential face deposition of gold nanoparticles on silicon nanowires by galvanic displacement. CrystEngComm, 2012, 14, 5230.	1.3	24

#	Article	IF	CITATIONS
109	Expanding the Repertoire of Molecular Linkages to Silicon: Si–S, Si–Se, and Si–Te Bonds. ACS Applied Materials & Company; Interfaces, 2016, 8, 11091-11099.	4.0	24
110	Bipolar Resistive Switching in Junctions of Gallium Oxide and p-type Silicon. Nano Letters, 2021, 21, 2666-2674.	4.5	24
111	Virtual Issue on Best Practices for Reporting the Properties of Materials and Devices. Chemistry of Materials, 2016, 28, 3525-3526.	3.2	23
112	Virtual Issue on Machine-Learning Discoveries in Materials Science. Chemistry of Materials, 2019, 31, 8243-8247.	3.2	23
113	Stabilizing Tin Anodes in Sodium-Ion Batteries by Alloying with Silicon. ACS Applied Energy Materials, 2020, 3, 9950-9962.	2.5	23
114	Open the Floodgates for Online Feedback on Scientific Papers? Not So Fast. ACS Nano, 2013, 7, 1-2.	7.3	22
115	Optimization of the Bulk Heterojunction of All-Small-Molecule Organic Photovoltaics Using Design of Experiment and Machine Learning Approaches. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54596-54607.	4.0	22
116	Self-assembly of peptide based nanotubes. Materials Science and Engineering C, 1997, 4, 207-212.	3.8	21
117	Constructing Metal-Based Structures on Nanopatterned Etched Silicon. ACS Nano, 2011, 5, 5015-5024.	7.3	21
118	Substance over Subjectivity: Moving beyond the Histogram. Chemistry of Materials, 2016, 28, 5973-5975.	3.2	21
119	Preferential Alignment of Incommensurate Block Copolymer Dot Arrays Forming Moiré Superstructures. ACS Nano, 2017, 11, 3237-3246.	7.3	21
120	Chemistry of Materials for Water Splitting Reactions. Chemistry of Materials, 2018, 30, 7325-7327.	3.2	21
121	Layer-by-Layer Growth of Graphene Oxide-Based Films for Electronics Applications in 1999: Early Leaders. Chemistry of Materials, 2015, 27, 1-2.	3.2	19
122	Alternating Silicon and Carbon Multilayer-Structured Anodes Suppress Formation of the c-Li _{3.75} Si Phase. Chemistry of Materials, 2019, 31, 6578-6589.	3.2	19
123	Optical sensing of amine vapors with a series of tin compoundsElectronic supplementary information (ESI) available: experimental section. See http://www.rsc.org/suppdata/cc/b4/b406230b/. Chemical Communications, 2004, , 2028.	2.2	18
124	Summarize Your Work in 100 Milliseconds or Less The Importance of the Table of Contents Image. ACS Nano, 2011, 5, 7687-7689.	7.3	18
125	The Experimental Section: The Key to Longevity of Your Research. Chemistry of Materials, 2014, 26, 1765-1766.	3.2	18
126	Sequential Nanopatterned Block Copolymer Self-Assembly on Surfaces. Langmuir, 2016, 32, 5890-5898.	1.6	17

#	Article	IF	CITATIONS
127	25 Years of Proud History: Building for the Next 25. Chemistry of Materials, 2014, 26, 1-2.	3.2	16
128	Rising to the Challenge: John B. Goodenough and Youngsik Kim, and "Challenges for Rechargeable Li Batteries― Chemistry of Materials, 2015, 27, 5149-5150.	3.2	16
129	Preface to the Special Issue on Methods and Protocols in Materials Chemistry. Chemistry of Materials, 2017, 29, 1-2.	3.2	16
130	Virtual Issue on Metal-Halide Perovskite Nanocrystalsâ€"A Bright Future for Optoelectronics. Chemistry of Materials, 2017, 29, 8915-8917.	3.2	16
131	UVâ€Induced Ferroelectric Phase Transformation in PVDF Thin Films. Advanced Electronic Materials, 2019, 5, 1800363.	2.6	16
132	Your Research Results Look Compelling, but Are They Reliable?. Chemistry of Materials, 2014, 26, 2211-2213.	3.2	15
133	Titles and Table of Contents Images: The Candy Store Analogy. Chemistry of Materials, 2014, 26, 1289-1290.	3.2	15
134	Building Upon Patterned Organic Monolayers Produced via Catalytic Stamp Lithography. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2301-2307.	4.0	14
135	Understanding the Effects of a High Surface Area Nanostructured Indium Tin Oxide Electrode on Organic Solar Cell Performance. ACS Applied Materials & Solar Cell Performance. ACS Applied Materials & Solar Cell Performance.	4.0	14
136	Understanding the Mechanism of Enhanced Cycling Stability in Sn–Sb Composite Na-Ion Battery Anodes: Operando Alloying and Diffusion Barriers. ACS Applied Energy Materials, 2019, 2, 5133-5139.	2.5	14
137	Mastering the Art of Scientific Publication. Journal of Physical Chemistry Letters, 2014, 5, 3519-3521.	2.1	13
138	Polymers, Plasmons, and Patterns: Mechanism of Plasmon-Induced Hydrosilylation on Silicon. Chemistry of Materials, 2016, 28, 9158-9168.	3.2	13
139	Confronting Racism in Chemistry Journals. ACS Applied Materials & Samp; Interfaces, 2020, 12, 28925-28927.	4.0	13
140	Solvent Vapor Annealing, Defect Analysis, and Optimization of Self-Assembly of Block Copolymers Using Machine Learning Approaches. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28639-28649.	4.0	12
141	A simple in situ 31P NMR method for the determination of the enantiomeric purity of aromatic substrates. Journal of the Chemical Society Chemical Communications, 1995, , 689.	2.0	11
142	Block copolymer mediated deposition of metal nanoparticles on germanium nanowires. Chemical Communications, 2007, , 1438.	2.2	11
143	Block copolymer-templated chemical nanopatterning on pyrolyzed photoresist carbon films. Chemical Communications, 2012, 48, 9741.	2.2	11
144	Mega-Journals and Peer Review: Can Quality and Standards Survive?. Chemistry of Materials, 2015, 27, 2243-2243.	3.2	11

#	Article	IF	CITATIONS
145	Adhesion and Surface Layers on Silicon Anodes Suppress Formation of <i>c</i> -Li _{3.75} Si and Solid-Electrolyte Interphase. ACS Applied Energy Materials, 2020, 3, 1609-1616.	2.5	10
146	Increased Volatility of Barium Metal Organics by the Use of Nitrogen Lewis Bases. Materials Research Society Symposia Proceedings, 1990, 204, 545.	0.1	9
147	Conjugation of A and B Blood Group Structures to Silica Microparticles for the Detection of Antigen-Specific B Cells. Bioconjugate Chemistry, 2016, 27, 705-715.	1.8	9
148	Figure Size: Please Be Kind to Your Reader. Chemistry of Materials, 2017, 29, 8021-8022.	3.2	9
149	Water-soluble pH-switchable cobalt complexes for aqueous symmetric redox flow batteries. Chemical Communications, 2020, 56, 3605-3608.	2.2	9
150	The Art of Writing the Title of Your Paper. Chemistry of Materials, 2014, 26, 3349-3350.	3.2	8
151	Photochemical Water Splitting Pioneer: Frank Osterloh and <i>Chemistry of Materials ⟨i⟩' 1k Club. Chemistry of Materials, 2016, 28, 1-2.</i>	3.2	8
152	Vapor-Phase Nanopatterning of Aminosilanes with Electron Beam Lithography: Understanding and Minimizing Background Functionalization. Langmuir, 2018, 34, 4780-4792.	1.6	8
153	Plasmonic Stamps Fabricated by Gold Dewetting on PDMS for Catalyzing Hydrosilylation on Silicon Surfaces. ACS Applied Nano Materials, 2019, 2, 3238-3245.	2.4	8
154	van der Waals Epitaxy of Soft Twisted Bilayers: Lattice Relaxation and Mass Density Waves. ACS Nano, 2020, 14, 13441-13450.	7.3	8
155	Magnetic chaperones for droplets. Nature Materials, 2004, 3, 847-849.	13.3	7
156	Transport Properties of Thiophenes: Insights from Density-Functional Theory Modeling Using Dispersion-Correcting Potentials. Journal of Physical Chemistry C, 2010, 114, 10952-10961.	1.5	7
157	F [–] Doping on TiO ₂ Provided Important Insights into Photocatalysis. Chemistry of Materials, 2015, 27, 1443-1444.	3.2	7
158	Which Font Looks Best in a Figure?. Chemistry of Materials, 2016, 28, 689-690.	3.2	7
159	Template Synthesis Approach to Nanomaterials: Charles Martin. Chemistry of Materials, 2014, 26, 4889-4890.	3.2	6
160	Methods/Protocolsâ€"A New Article Type in Chemistry of Materials. Chemistry of Materials, 2017, 29, 475-476.	3.2	6
161	Father of Mesoporous Materials: Galen D. Stucky. Chemistry of Materials, 2014, 26, 5819-5820.	3.2	5
162	Hot Topics in Materials Chemistry and the Immediacy Index Long-Term versus Short-Term Impact. Chemistry of Materials, 2015, 27, 1147-1148.	3.2	5

#	Article	IF	CITATIONS
163	Big Roles for Nanocenters. ACS Nano, 2015, 9, 8639-8640.	7.3	5
164	Table of Contents Images: Science and Beauty = Clarity. Chemistry of Materials, 2016, 28, 1589-1590.	3.2	5
165	Early in the Game: Graphene/Polyaniline Nanocomposites for Supercapacitors. Chemistry of Materials, 2017, 29, 4607-4608.	3.2	5
166	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Materials & Interfaces, 2020, 12, 20147-20148.	4.0	5
167	Confronting Racism in Chemistry Journals. Nano Letters, 2020, 20, 4715-4717.	4.5	5
168	Snapshots of Lifeâ€"Early Career Materials Scientists Managing in the Midst of a Pandemic. Chemistry of Materials, 2020, 32, 3673-3677.	3.2	5
169	A Quiet Revolution. ACS Nano, 2009, 3, 3335-3336.	7.3	4
170	In Response. ACS Nano, 2012, 6, 3643-3645.	7.3	4
171	2016 Chemistry Nobel Prize - Molecular Machines Are Real. Chemistry of Materials, 2016, 28, 7179-7180.	3.2	4
172	Best Practices for New Polymers and Nanoparticulate Systems. Chemistry of Materials, 2018, 30, 6587-6588.	3.2	4
173	Confronting Racism in Chemistry Journals. Organic Letters, 2020, 22, 4919-4921.	2.4	4
174	Beyond Thin Films: Clarifying the Impact of <i>c</i> -Li ₁₅ Si ₄ Formation in Thin Film, Nanoparticle, and Porous Si Electrodes. ACS Applied Materials & Samp; Interfaces, 2021, 13, 38147-38160.	4.0	4
175	Silicon-Carbon Bond Formation on Porous Silicon. , 2014, , 683-693.		4
176	Mixing, Domains, and Fast Li-Ion Dynamics in Ternary Li–Sb–Bi Battery Anode Alloys. Journal of Physical Chemistry C, 2022, 126, 2394-2402.	1.5	4
177	Positive and negative photopatterning of metal oxides on silicon via bipolar electrochemical deposition. Chemical Communications, 2001, , 1614-1615.	2.2	3
178	The Quest for Longevity and Stability of Iridium-based Hydrogenation Catalysts: N-Heterocyclic Carbenes and Crabtree′s Catalyst. , 2006, , 241-255.		3
179	We Take It Personally. ACS Nano, 2012, 6, 10417-10419.	7.3	3
180	Our New "Up-and-Coming Series―of Perspectives. Chemistry of Materials, 2014, 26, 3027-3027.	3.2	3

#	Article	IF	CITATIONS
181	Pre-Publication Peer Review—Evidence and Editors. Chemistry of Materials, 2015, 27, 3783-3784.	3.2	3
182	How We Choose Cover Images. Chemistry of Materials, 2015, 27, 5451-5452.	3.2	3
183	Paul O'Brien: Materials Chemistry Pioneer (Jan 22, 1954–Oct 16, 2018). Chemistry of Materials, 2018, 30, 8113-8115.	3.2	3
184	Three Pillars of Effective Research. <i>Measurements, Analysis, and Dissemination </i> – A Virtual Issue. ACS Energy Letters, 2019, 4, 2473-2474.	8.8	3
185	<i>ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. Chemistry of Materials, 2019, 31, 563-564.</i>	3.2	3
186	2019—We Are 30!. Chemistry of Materials, 2019, 31, 1-1.	3.2	3
187	Checking in with Women Materials Scientists During a Global Pandemic: May 2020. Chemistry of Materials, 2020, 32, 4859-4862.	3.2	3
188	Reconsidering X-ray Photoelectron Spectroscopy Quantification of Substitution Levels of Monolayers on Unoxidized Silicon Surfaces. Journal of Physical Chemistry C, 2020, 124, 16461-16477.	1.5	3
189	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of the American Chemical Society, 2020, 142, 8059-8060.	6.6	3
190	Functionalization of Silicon Surfaces for Device Applications. Journal of the Association for Laboratory Automation, 1999, 4, 36-39.	2.8	2
191	Large area assembled periodic nanoarrays by block copolymer templating and glancing angle deposition. Proceedings of SPIE, 2008, , .	0.8	2
192	In Memoriam, Victor SY. Lin. ACS Nano, 2010, 4, 2973-2974.	7.3	2
193	Announcing the Recipients of the 2012 <i>ACS Nano</i> Lectureship Awards. ACS Nano, 2012, 6, 987-989.	7. 3	2
194	<i>Chemistry of Materials</i> à' 1k Club: Klaus-Dieter Kreuer. Establishing the Connection Between Materials and Proton Conductivity. Chemistry of Materials, 2014, 26, 6651-6652.	3.2	2
195	Should I Reveal the History of My Manuscript?. Chemistry of Materials, 2014, 26, 2487-2487.	3.2	2
196	Organic Photovoltaics: An Early Innovator. Chemistry of Materials, 2014, 26, 5181-5182.	3.2	2
197	Growth at Chemistry of Materials. Chemistry of Materials, 2014, 26, 5421-5421.	3.2	2
198	Nanomaterials Pioneers: Nikoobakht and El-Sayed. Chemistry of Materials, 2014, 26, 4669-4670.	3.2	2

#	Article	IF	CITATIONS
199	The Impact of the Impact Factor. Chemistry of Materials, 2014, 26, 3871-3872.	3.2	2
200	<i>Chemistry of Materials</i> ' 1k Club: Understanding the Complexity of Nanocomposites. Chemistry of Materials, 2015, 27, 401-403.	3.2	2
201	Materials Scienceâ€"A New Era for Chemistry. Chemistry of Materials, 2015, 27, 6899-6900.	3.2	2
202	Goodbye, Millie—Bidding Adieu to a Remarkable Materials Scientist. Chemistry of Materials, 2017, 29, 1867-1867.	3.2	2
203	Prof. Millie Dresselhaus (1930–2017), Carbon Nanomaterials Pioneer. ACS Nano, 2017, 11, 2307-2308.	7.3	2
204	That's a Wrap: Graphene-Wrapped Magnetite Anodes for Lithium Ion Batteries. Chemistry of Materials, 2017, 29, 6561-6562.	3.2	2
205	Rationally Assembling the Pieces of π-Conjugated Polymers for Organic Electronics and Photovoltaics. Chemistry of Materials, 2017, 29, 6179-6180.	3.2	2
206	Positively Highly Cited: Positive Electrode Materials for Li-Ion and Li-Batteries. Chemistry of Materials, 2018, 30, 559-560.	3. 2	2
207	Chemistry of Materials–Our 30th Volume, Our 30th Year. Chemistry of Materials, 2018, 30, 1-1.	3.2	2
208	Wired Chemistry: The Synthetic Chemistry that Made Silver Nanowire-Based Electrodes Possible. Chemistry of Materials, 2018, 30, 4875-4876.	3.2	2
209	The "Holey―Grail: Zeolites and Molecular Sieves. Chemistry of Materials, 2018, 30, 5519-5520.	3.2	2
210	Integrating Hybrid Nanomaterials: From Nanobuilding Blocks to Complex Structured Nanocomposites. Chemistry of Materials, 2019, 31, 4627-4628.	3. 2	2
211	Festschrift in Honor of Prof. Jean-Luc Brédas on His 65th Birthday. Chemistry of Materials, 2019, 31, 6307-6308.	3.2	2
212	Our 2019 Virtual Issue: Methods and Protocols in Materials Science. Chemistry of Materials, 2019, 31, 2683-2684.	3.2	2
213	Chemistry of Materials at 30 Years: Interview with Founding Editor-in-Chief, Leonard V. Interrante. Chemistry of Materials, 2019, 31, 1119-1120.	3.2	2
214	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Nano, 2020, 14, 5151-5152.	7.3	2
215	Confronting Racism in Chemistry Journals. ACS Nano, 2020, 14, 7675-7677.	7.3	2
216	Confronting Racism in Chemistry Journals. Chemical Reviews, 2020, 120, 5795-5797.	23.0	2

#	Article	IF	CITATIONS
217	HARNESSING SYNTHETIC VERSATILITY TOWARD INTELLIGENT INTERFACIAL DESIGN: ORGANIC FUNCTIONALIZATION OF NANOSTRUCTURED SILICON SURFACES., 2003, , 227-259.		2
218	Nanoscience and Entrepreneurship. ACS Nano, 2022, 16, 6943-6944.	7.3	2
219	Catalytic Olefin Hydrogenation Using N-Heterocyclic Carbene—Phosphine Complexes of Iridium ChemInform, 2003, 34, no.	0.1	1
220	Morphology control and nanoscale patterning of small molecule organic thin films. Proceedings of SPIE, $2012, $, .	0.8	1
221	The Nobel Prize, Social Media, and Materials. Chemistry of Materials, 2014, 26, 6087-6087.	3.2	1
222	New People, New Directions in 2014. Chemistry of Materials, 2014, 26, 871-871.	3.2	1
223	Give Your ACS Author Rewards a Try: Make Your Paper Open Access. Chemistry of Materials, 2015, 27, 6167-6168.	3.2	1
224	Up-and-Coming Series of Perspectives from Early Career Stars in Materials. Chemistry of Materials, 2015, 27, 7547-7548.	3.2	1
225	From Adsorption to Ordered Mesoporous Materials: Jaroniec and Kruk. Chemistry of Materials, 2015, 27, 1903-1904.	3.2	1
226	Papers with Longevity: Long-Term "Inhabitants―of Our Top Download Lists. Chemistry of Materials, 2015, 27, 7205-7206.	3.2	1
227	International Workshop on Materials Science and Engineering at KAIST. Chemistry of Materials, 2016, 28, 5567-5568.	3.2	1
228	Hot Materials Chemistry in a Cool Country. Chemistry of Materials, 2017, 29, 4161-4161.	3.2	1
229	Inaugural Chemistry of Materials Best Paper Lectureshipâ€"Kai Zhu and Zhen Li, and the Tuning of Perovskite Solar Cells. Chemistry of Materials, 2017, 29, 7631-7632.	3.2	1
230	Virtual Issue Celebrating the Life and Career of Millie Dresselhaus. Chemistry of Materials, 2017, 29, 5017-5018.	3.2	1
231	More than 2017 Reasons We Appreciate Our Authors, Reviewers, and Readers. Chemistry of Materials, 2017, 29, 10245-10247.	3.2	1
232	Does Anyone Actually Read Editorials?. Chemistry of Materials, 2017, 29, 9861-9862.	3.2	1
233	Virtual Issue: Methods and Protocols Series in Materials Science—2018. Chemistry of Materials, 2018, 30, 1443-1445.	3.2	1
234	2018â€"Thank You to All of Our Authors, Reviewers, and Readers. Chemistry of Materials, 2018, 30, 8717-8717.	3.2	1

#	Article	IF	CITATIONS
235	In Honor of Professor Markku LeskeläChemistry of Materials, 2018, 30, 4469-4474.	3.2	1
236	<i>ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. ACS Applied Materials & Description of Materials (i) To Exclusively Publish Full Articles in 2019. ACS Applied Materials (ii) and (ii) Chemistry of Materials (iii) To Exclusively Publish Full Articles in 2019. ACS Applied Materials (iii) and (ii) Chemistry of Materials (iii) To Exclusively Publish Full Articles in 2019. ACS Applied Materials (iii) and (iii) Chemistry of Materials (iii) To Exclusively Publish Full Articles in 2019. ACS Applied Materials (iii) and (iii) Chemistry of Materials (iii) To Exclusively Publish Full Articles (iii) ACS Applied Materials (iiii) ACS Applied Materials (iii) ACS Applied Materials (iii) ACS Applied</i>	4.0	1
237	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Energy Letters, 2020, 5, 1610-1611.	8.8	1
238	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science and Technology Letters, 2020, 7, 280-281.	3.9	1
239	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Education, 2020, 97, 1217-1218.	1.1	1
240	<i>ACS Nano</i> and ChemRxiv: Community Matters. ACS Nano, 2020, 14, 12263-12264.	7.3	1
241	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry Letters, 2020, 11, 5279-5281.	2.1	1
242	Confronting Racism in Chemistry Journals. ACS Central Science, 2020, 6, 1012-1014.	5.3	1
243	Confronting Racism in Chemistry Journals. Journal of the American Society for Mass Spectrometry, 2020, 31, 1321-1323.	1.2	1
244	Tutorials and Articles on Best Practices. ACS Nano, 2020, 14, 10751-10753.	7.3	1
245	Confronting Racism in Chemistry Journals. Crystal Growth and Design, 2020, 20, 4201-4203.	1.4	1
246	Confronting Racism in Chemistry Journals. ACS Catalysis, 2020, 10, 7307-7309.	5.5	1
247	Confronting Racism in Chemistry Journals. Journal of the American Chemical Society, 2020, 142, 11319-11321.	6.6	1
248	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry B, 2020, 124, 5335-5337.	1.2	1
249	What Papers Were of the Greatest Interest to Our Readers in 2019? The Top 20 Downloads of the Year. Chemistry of Materials, 2020, 32, 1-2.	3.2	1
250	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Crystal Growth and Design, 2020, 20, 2817-2818.	1.4	1
251	Confronting Racism in Chemistry Journals. ACS Biomaterials Science and Engineering, 2020, 6, 3690-3692.	2.6	1
252	Growing Contributions of Nano in 2020. ACS Nano, 2020, 14, 16163-16164.	7.3	1

#	Article	lF	CITATIONS
253	Confronting Racism in Chemistry Journals. ACS Omega, 2020, 5, 14857-14859.	1.6	1
254	Confronting Racism in Chemistry Journals. Molecular Pharmaceutics, 2020, 17, 2229-2231.	2.3	1
255	Confronting Racism in Chemistry Journals. ACS Chemical Neuroscience, 2020, 11, 1852-1854.	1.7	1
256	Functionalization of Porous Silicon with Alkenes and Alkynes via Carbocation-Mediated Hydrosilylation. Materials Research Society Symposia Proceedings, 2002, 737, 575.	0.1	0
257	New Pairs of Inks and Papers for Photolithography, Microcontact Printing, and Scanning Probe Nanolithography. Materials Research Society Symposia Proceedings, 2002, 737, 409.	0.1	0
258	Electroless Deposition and Patterning of Morphologically Complex Precious Metal Films on Semiconductor Surfaces. Materials Research Society Symposia Proceedings, 2002, 737, 588.	0.1	0
259	ACS Nano in 2011 and Looking Forward to 2012. ACS Nano, 2011, 5, 9301-9302.	7.3	0
260	Controlling C<inf>60</inf> fullerene nanocolumn morphology for organic photovoltaic applications. , $2011, \dots$		0
261	Organic Photovoltaics: Work Function Control of Interfacial Buffer Layers for Efficient and Airâ€Stable Inverted Lowâ€Bandgap Organic Photovoltaics (Adv. Energy Mater. 3/2012). Advanced Energy Materials, 2012, 2, 278-278.	10.2	0
262	Looking Back: Recap of 2014 at <i>Chemistry of Materials</i> . Chemistry of Materials, 2014, 26, 6905-6906.	3.2	0
263	Scientific Publishing as an Art. Chemistry of Materials, 2014, 26, 6319-6319.	3.2	0
264	Silicon-Carbon Bond Formation on Porous Silicon. , 2014, , 1-11.		0
265	Appealing Chemistry: How Our Appeals Process Works. Chemistry of Materials, 2014, 26, 4045-4045.	3.2	0
266	Highlights of 2014, Thus Far. Chemistry of Materials, 2014, 26, 2765-2765.	3.2	0
267	The Latest from Our Up-and-Coming Series. Chemistry of Materials, 2014, 26, 4321-4321.	3.2	0
268	Chemistry of Materials Celebrates the 80th Birthday of One of the Premier "Chemists of Materials― Chemistry of Materials, 2014, 26, 3593-3594.	3.2	0
269	Just Accepted, Most Read, and New Faces. Chemistry of Materials, 2014, 26, 1983-1984.	3.2	0
270	The 2015 Division of Inorganic Chemistry Award, Sponsored by <i>Chemistry of Materials </i> Chemistry of Materials, 2015, 27, 5839-5839.	3.2	0

#	Article	IF	Citations
271	ChinaNANO 2015: 6th Annual Conference on Nanoscience and Technology. Chemistry of Materials, 2015, 27, 6477-6477.	3.2	0
272	Thank You For Your Continued Support in 2015. Chemistry of Materials, 2015, 27, 8179-8180.	3.2	0
273	<i>Chemistry of Materials (i) at Pacifichem 2015. Chemistry of Materials, 2015, 27, 7843-7843.</i>	3.2	0
274	<i>Chemistry of Materials</i> , Editors' Choice, and Twitter. Chemistry of Materials, 2015, 27, 649-649.	3.2	0
275	New Reference Format for Chemistry of Materials. Chemistry of Materials, 2015, 27, 3177-3177.	3.2	0
276	News at Chemistry of Materials: Up-and-Coming Series, A New Editor. Chemistry of Materials, 2015, 27, 2719-2720.	3.2	0
277	We Are the Community, Too. Chemistry of Materials, 2016, 28, 4523-4523.	3.2	0
278	<i>Chemistry of Materials</i> in 2016â€"Thank You to Our Authors, Reviewers, and Readers. Chemistry of Materials, 2016, 28, 8843-8843.	3.2	0
279	Some Like It Hot: Development of Polymer Electrolyte Membranes for Use Above 100 \hat{A}° C. Chemistry of Materials, 2016, 28, 3235-3236.	3.2	0
280	Materials + Energy + International Collaboration = Fundamental Insights. Chemistry of Materials, 2016, 28, 2883-2885.	3.2	0
281	Materials Chemistry and the Challenge To Develop Clean Energy Technologies. Chemistry of Materials, 2016, 28, 6425-6425.	3.2	0
282	Evolution of Materials Chemistry: New Editors, New Areas of Expertise. Chemistry of Materials, 2016, 28, 5173-5174.	3.2	0
283	Up-and-Coming Perspectives: Share the Excitement of Top Early Career Researchers in Materials Chemistry. Chemistry of Materials, 2016, 28, 4083-4084.	3.2	0
284	Updates to the Web Site of <i>Chemistry of Materials</i> . Chemistry of Materials, 2016, 28, 6803-6803.	3.2	0
285	Solving Drug Delivery by Drawing from Two Different Fields: Materials Chemistry and Pharmacy. Chemistry of Materials, 2016, 28, 1245-1246.	3.2	0
286	Preprintsâ€"Yes You Can. Chemistry of Materials, 2017, 29, 1447-1447.	3.2	0
287	Inaugural Lectureship of Chemistry of Materials. Chemistry of Materials, 2017, 29, 907-907.	3.2	0
288	Pioneers in Two-Dimensional Nanostructured Materials: Confinement of Ultrathin Polymer Layers. Chemistry of Materials, 2017, 29, 3807-3808.	3.2	0

#	Article	IF	Citations
289	Welcome to New Editors. Chemistry of Materials, 2018, 30, 303-303.	3.2	O
290	Virtual Issue: Methods and Protocols Series in Materials Science—2018. ACS Biomaterials Science and Engineering, 2018, 4, 748-750.	2.6	0
291	<i>Chemistry of Materials $\langle l \rangle$ 1k Club: Functionalized Hybrid Mesoporous Networks. Chemistry of Materials, 2018, 30, 4177-4178.</i>	3.2	0
292	Interview with Chemistry of Materials Executive Editor Elsa Reichmanis. Chemistry of Materials, 2019, 31, 4625-4626.	3.2	0
293	Chemistry of Materials/30th Anniversary Editorial Interview with Prof. Charlene Crawley. Chemistry of Materials, 2019, 31, 3849-3850.	3.2	0
294	Our 2019 Virtual Issue: Methods and Protocols in Materials Science. ACS Biomaterials Science and Engineering, 2019, 5, 2052-2053.	2.6	0
295	Reducing Graphene Oxide to Graphene Using Only Supercritical Water. Chemistry of Materials, 2019, 31, 4323-4324.	3.2	0
296	Confronting Racism in Chemistry Journals. ACS Pharmacology and Translational Science, 2020, 3, 559-561.	2.5	0
297	Confronting Racism in Chemistry Journals. Biochemistry, 2020, 59, 2313-2315.	1.2	0
298	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Biomaterials Science and Engineering, 2020, 6, 2707-2708.	2.6	0
299	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Central Science, 2020, 6, 589-590.	5.3	0
300	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Chemical Biology, 2020, 15, 1282-1283.	1.6	0
301	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Chemical Neuroscience, 2020, 11, 1196-1197.	1.7	0
302	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Earth and Space Chemistry, 2020, 4, 672-673.	1.2	0
303	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Macro Letters, 2020, 9, 666-667.	2.3	0
304	Update to Our Reader, Reviewer, and Author Communities—April 2020. , 2020, 2, 563-564.		0
305	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Photonics, 2020, 7, 1080-1081.	3.2	0
306	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Pharmacology and Translational Science, 2020, 3, 455-456.	2.5	0

#	Article	IF	Citations
307	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sustainable Chemistry and Engineering, 2020, 8, 6574-6575.	3.2	O
308	Update to Our Reader, Reviewer, and Author Communities—April 2020. Analytical Chemistry, 2020, 92, 6187-6188.	3.2	0
309	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemistry of Materials, 2020, 32, 3678-3679.	3.2	0
310	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Proteome Research, 2020, 19, 1883-1884.	1.8	0
311	Confronting Racism in Chemistry Journals. Langmuir, 2020, 36, 7155-7157.	1.6	0
312	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Polymer Materials, 2020, 2, 1739-1740.	2.0	0
313	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Combinatorial Science, 2020, 22, 223-224.	3.8	0
314	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Medicinal Chemistry Letters, 2020, 11, 1060-1061.	1.3	0
315	Editorial Confronting Racism in Chemistry Journals. , 2020, 2, 829-831.		0
316	Confronting Racism in Chemistry Journals. ACS Applied Energy Materials, 2020, 3, 6016-6018.	2.5	0
317	Confronting Racism in Chemistry Journals. Industrial & Engineering Chemistry Research, 2020, 59, 11915-11917.	1.8	0
318	Confronting Racism in Chemistry Journals. Journal of Natural Products, 2020, 83, 2057-2059.	1.5	0
319	Confronting Racism in Chemistry Journals. ACS Medicinal Chemistry Letters, 2020, 11, 1354-1356.	1.3	0
320	Confronting Racism in Chemistry Journals. Energy & Energy & 2020, 34, 7771-7773.	2.5	0
321	Confronting Racism in Chemistry Journals. ACS Sensors, 2020, 5, 1858-1860.	4.0	0
322	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Biochemistry, 2020, 59, 1641-1642.	1.2	0
323	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical & Engineering Data, 2020, 65, 2253-2254.	1.0	0
324	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Process Research and Development, 2020, 24, 872-873.	1.3	0

#	Article	IF	CITATIONS
325	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Omega, 2020, 5, 9624-9625.	1.6	o
326	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Electronic Materials, 2020, 2, 1184-1185.	2.0	0
327	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry C, 2020, 124, 9629-9630.	1.5	0
328	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry Letters, 2020, 11, 3571-3572.	2.1	0
329	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Synthetic Biology, 2020, 9, 979-980.	1.9	O
330	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Energy Materials, 2020, 3, 4091-4092.	2.5	0
331	Confronting Racism in Chemistry Journals. Journal of Chemical Theory and Computation, 2020, 16, 4003-4005.	2.3	O
332	Confronting Racism in Chemistry Journals. Journal of Organic Chemistry, 2020, 85, 8297-8299.	1.7	0
333	Confronting Racism in Chemistry Journals. Analytical Chemistry, 2020, 92, 8625-8627.	3.2	O
334	Thank You for the Chance to Serve the Materials Chemistry Community. Chemistry of Materials, 2020, 32, 4855-4855.	3.2	0
335	Confronting Racism in Chemistry Journals. Journal of Chemical Education, 2020, 97, 1695-1697.	1.1	O
336	Confronting Racism in Chemistry Journals. Organic Process Research and Development, 2020, 24, 1215-1217.	1.3	0
337	Confronting Racism in Chemistry Journals. ACS Sustainable Chemistry and Engineering, 2020, 8, .	3.2	O
338	Confronting Racism in Chemistry Journals. Chemistry of Materials, 2020, 32, 5369-5371.	3.2	0
339	Confronting Racism in Chemistry Journals. Chemical Research in Toxicology, 2020, 33, 1511-1513.	1.7	O
340	Confronting Racism in Chemistry Journals. Inorganic Chemistry, 2020, 59, 8639-8641.	1.9	0
341	Confronting Racism in Chemistry Journals. ACS Applied Nano Materials, 2020, 3, 6131-6133.	2.4	0
342	Confronting Racism in Chemistry Journals. ACS Applied Polymer Materials, 2020, 2, 2496-2498.	2.0	0

#	Article	IF	CITATIONS
343	Confronting Racism in Chemistry Journals. ACS Chemical Biology, 2020, 15, 1719-1721.	1.6	O
344	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Theory and Computation, 2020, 16, 2881-2882.	2.3	0
345	Confronting Racism in Chemistry Journals. Biomacromolecules, 2020, 21, 2543-2545.	2.6	0
346	Confronting Racism in Chemistry Journals. Journal of Medicinal Chemistry, 2020, 63, 6575-6577.	2.9	0
347	Confronting Racism in Chemistry Journals. Macromolecules, 2020, 53, 5015-5017.	2.2	0
348	Confronting Racism in Chemistry Journals. Organometallics, 2020, 39, 2331-2333.	1.1	0
349	Confronting Racism in Chemistry Journals. Accounts of Chemical Research, 2020, 53, 1257-1259.	7.6	0
350	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry A, 2020, 124, 5271-5273.	1.1	0
351	Confronting Racism in Chemistry Journals. ACS Energy Letters, 2020, 5, 2291-2293.	8.8	0
352	Confronting Racism in Chemistry Journals. Journal of Chemical Information and Modeling, 2020, 60, 3325-3327.	2.5	0
353	Confronting Racism in Chemistry Journals. Journal of Proteome Research, 2020, 19, 2911-2913.	1.8	0
354	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Agricultural and Food Chemistry, 2020, 68, 5019-5020.	2.4	0
355	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Physical Chemistry B, 2020, 124, 3603-3604.	1.2	0
356	Confronting Racism in Chemistry Journals. Bioconjugate Chemistry, 2020, 31, 1693-1695.	1.8	0
357	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Applied Nano Materials, 2020, 3, 3960-3961.	2.4	0
358	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Natural Products, 2020, 83, 1357-1358.	1.5	0
359	Confronting Racism in Chemistry Journals. ACS Synthetic Biology, 2020, 9, 1487-1489.	1.9	0
360	Confronting Racism in Chemistry Journals. Journal of Chemical & Engineering Data, 2020, 65, 3403-3405.	1.0	0

#	Article	lF	CITATIONS
361	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Bioconjugate Chemistry, 2020, 31, 1211-1212.	1.8	O
362	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Chemical Health and Safety, 2020, 27, 133-134.	1.1	0
363	Update to Our Reader, Reviewer, and Author Communities—April 2020. Chemical Research in Toxicology, 2020, 33, 1509-1510.	1.7	0
364	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Energy & Samp; Fuels, 2020, 34, 5107-5108.	2.5	0
365	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Applied Bio Materials, 2020, 3, 2873-2874.	2.3	0
366	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Organic Chemistry, 2020, 85, 5751-5752.	1.7	0
367	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of the American Society for Mass Spectrometry, 2020, 31, 1006-1007.	1.2	0
368	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Accounts of Chemical Research, 2020, 53, 1001-1002.	7.6	0
369	Update to Our Reader, Reviewer, and Author Communities—April 2020. Biomacromolecules, 2020, 21, 1966-1967.	2.6	0
370	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Chemical Reviews, 2020, 120, 3939-3940.	23.0	0
371	Update to Our Reader, Reviewer, and Author Communities—April 2020. Environmental Science & Technology, 2020, 54, 5307-5308.	4.6	0
372	Update to Our Reader, Reviewer, and Author Communities—April 2020. Langmuir, 2020, 36, 4565-4566.	1.6	0
373	Update to Our Reader, Reviewer, and Author Communities—April 2020. Molecular Pharmaceutics, 2020, 17, 1445-1446.	2.3	0
374	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. ACS Infectious Diseases, 2020, 6, 891-892.	1.8	0
375	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Medicinal Chemistry, 2020, 63, 4409-4410.	2.9	0
376	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Journal of Physical Chemistry A, 2020, 124, 3501-3502.	1.1	0
377	Update to Our Reader, Reviewer, and Author Communities—April 2020. Nano Letters, 2020, 20, 2935-2936.	4.5	0
378	Update to Our Reader, Reviewer, and Author Communities—April 2020. ACS Sensors, 2020, 5, 1251-1252.	4.0	0

#	Article	IF	CITATIONS
379	Update to Our Reader, Reviewer, and Author Communities—April 2020. Journal of Chemical Information and Modeling, 2020, 60, 2651-2652.	2.5	О
380	Update to Our Reader, Reviewer, and Author Communitiesâ€"April 2020. Industrial & Engineering Chemistry Research, 2020, 59, 8509-8510.	1.8	0
381	Update to Our Reader, Reviewer, and Author Communities—April 2020. Inorganic Chemistry, 2020, 59, 5796-5797.	1.9	O
382	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organometallics, 2020, 39, 1665-1666.	1.1	0
383	Update to Our Reader, Reviewer, and Author Communities—April 2020. Organic Letters, 2020, 22, 3307-3308.	2.4	0
384	Confronting Racism in Chemistry Journals. ACS ES&T Engineering, 2021, 1, 3-5.	3.7	0
385	Confronting Racism in Chemistry Journals. ACS ES&T Water, 2021, 1, 3-5.	2.3	0
386	Kinetics of Plasmon-Driven Hydrosilylation of Silicon Surfaces: Photogenerated Charges Drive Siliconâ€"Carbon Bond Formation. Journal of Physical Chemistry C, 2021, 125, 17983-17992.	1.5	0
387	Silicon–Carbon Bond Formation on Porous Silicon. , 2017, , 1-12.		0
388	Silicon–Carbon Bond Formation on Porous Silicon. , 2018, , 1003-1014.		0
389	Confronting Racism in Chemistry Journals. ACS Applied Electronic Materials, 2020, 2, 1774-1776.	2.0	O
390	Confronting Racism in Chemistry Journals. Journal of Agricultural and Food Chemistry, 2020, 68, 6941-6943.	2.4	0
391	Confronting Racism in Chemistry Journals. ACS Earth and Space Chemistry, 2020, 4, 961-963.	1.2	O
392	Confronting Racism in Chemistry Journals. Environmental Science and Technology Letters, 2020, 7, 447-449.	3.9	0
393	Confronting Racism in Chemistry Journals. ACS Combinatorial Science, 2020, 22, 327-329.	3 . 8	0
394	Confronting Racism in Chemistry Journals. ACS Infectious Diseases, 2020, 6, 1529-1531.	1.8	0
395	Confronting Racism in Chemistry Journals. ACS Applied Bio Materials, 2020, 3, 3925-3927.	2.3	0
396	Confronting Racism in Chemistry Journals. Journal of Physical Chemistry C, 2020, 124, 14069-14071.	1.5	0

#	Article	IF	CITATIONS
397	Confronting Racism in Chemistry Journals. ACS Macro Letters, 2020, 9, 1004-1006.	2.3	0
398	Confronting Racism in Chemistry Journals. ACS Photonics, 2020, 7, 1586-1588.	3.2	0
399	Confronting Racism in Chemistry Journals. Environmental Science & Environmenta	4.6	0
400	Confronting Racism in Chemistry Journals. Journal of Chemical Health and Safety, 2020, 27, 198-200.	1.1	0
401	Tanks and Truth. ACS Nano, 2022, 16, 4975-4976.	7.3	0