Jie Xia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6973206/publications.pdf

Version: 2024-02-01

	687363	642732
599	13	23
citations	h-index	23 g-index
30	30	959
docs citations	times ranked	citing authors
	citations 30	599 13 citations h-index 30 30

#	Article	IF	CITATIONS
1	Advances in GPCR Modeling Evaluated by the GPCR Dock 2013 Assessment: Meeting New Challenges. Structure, 2014, 22, 1120-1139.	3.3	149
2	An Unbiased Method To Build Benchmarking Sets for Ligand-Based Virtual Screening and its Application To GPCRs. Journal of Chemical Information and Modeling, 2014, 54, 1433-1450.	5.4	46
3	Benchmarking methods and data sets for ligand enrichment assessment in virtual screening. Methods, 2015, 71, 146-157.	3.8	40
4	N-thiadiazole-4-hydroxy-2-quinolone-3-carboxamides bearing heteroaromatic rings as novel antibacterial agents: Design, synthesis, biological evaluation and target identification. European Journal of Medicinal Chemistry, 2020, 188, 112022.	5.5	36
5	Discovery of novel isoflavone derivatives as AChE/BuChE dual-targeted inhibitors: synthesis, biological evaluation and molecular modelling. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 968-977.	5.2	32
6	Mechanism-based design, synthesis and biological studies of N5-substituted tetrahydrofolate analogs as inhibitors of cobalamin-dependent methionine synthase and potential anticancer agents. European Journal of Medicinal Chemistry, 2012, 58, 228-236.	5.5	27
7	Comparative Modeling and Benchmarking Data Sets for Human Histone Deacetylases and Sirtuin Families. Journal of Chemical Information and Modeling, 2015, 55, 374-388.	5.4	25
8	Synthesis and biological activity evaluation of 20-epi-salinomycin and its 20-O-acyl derivatives. RSC Advances, 2016, 6, 41885-41890.	3.6	23
9	Design, Synthesis and Biological Evaluation of Noncovalent Inhibitors of Human CD38 NADase. ChemMedChem, 2012, 7, 223-228.	3.2	21
10	Study on pharmacokinetics and tissue distribution of single dose oral tryptanthrin in Kunming mice by validated reversed-phase high-performance liquid chromatography with ultraviolet detection. Integrative Medicine Research, 2017, 6, 269-279.	1.8	16
11	Screening of cytochrome P450 3A4 inhibitors <i>via in silico</i> and <i>in vitro</i> approaches. RSC Advances, 2018, 8, 34783-34792.	3.6	16
12	HDAC3iâ€Finder: A Machine Learningâ€based Computational Tool to Screen for HDAC3 Inhibitors. Molecular Informatics, 2021, 40, e2000105.	2.5	16
13	The discovery of novel HDAC3 inhibitors via virtual screening and <i>in vitro</i> bioassay. Journal of Enzyme Inhibition and Medicinal Chemistry, 2018, 33, 525-535.	5.2	15
14	Design and synthesis of conformationally constrained salinomycin derivatives. European Journal of Medicinal Chemistry, 2017, 138, 353-356.	5.5	14
15	Discovery of potent PTP1B inhibitors via structure-based drug design, synthesis and in vitro bioassay of Norathyriol derivatives. Bioorganic Chemistry, 2019, 86, 224-234.	4.1	13
16	Enrichment Assessment of Multiple Virtual Screening Strategies for Tollâ€Like Receptor 8 Agonists Based on a Maximal Unbiased Benchmarking Data Set. Chemical Biology and Drug Design, 2015, 86, 1226-1241.	3.2	11
17	Virtual Screening against Phosphoglycerate Kinase 1 in Quest of Novel Apoptosis Inhibitors. Molecules, 2017, 22, 1029.	3.8	11
18	The Development of Target-Specific Pose Filter Ensembles To Boost Ligand Enrichment for Structure-Based Virtual Screening. Journal of Chemical Information and Modeling, 2017, 57, 1414-1425.	5.4	10

#	Article	IF	CITATIONS
19	MUBDâ€DecoyMaker 2.0: A Python GUI Application to Generate Maximal Unbiased Benchmarking Data Sets for Virtual Drug Screening. Molecular Informatics, 2020, 39, e1900151.	2.5	10
20	Computational representations of protein–ligand interfaces for structure-based virtual screening. Expert Opinion on Drug Discovery, 2021, 16, 1175-1192.	5.0	10
21	Bacterial Lipoprotein Biosynthetic Pathway as a Potential Target for Structure-based Design of Antibacterial Agents. Current Medicinal Chemistry, 2020, 27, 1132-1150.	2.4	10
22	A Thoroughly Validated Virtual Screening Strategy for Discovery of Novel HDAC3 Inhibitors. International Journal of Molecular Sciences, 2017, 18, 137.	4.1	8
23	Activation of FXR and inhibition of EZH2 synergistically inhibit colorectal cancer through cooperatively accelerating FXR nuclear location and upregulating CDX2 expression. Cell Death and Disease, 2022, 13, 388.	6.3	8
24	Pose Filter-Based Ensemble Learning Enables Discovery of Orally Active, Nonsteroidal Farnesoid X Receptor Agonists. Journal of Chemical Information and Modeling, 2020, 60, 1202-1214.	5.4	7
25	Discovery of <i>N < /i> -quinazolinone-4-hydroxy-2-quinolone-3-carboxamides as DNA gyrase B-targeted antibacterial agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1620-1631.</i>	5.2	6
26	Histone deacetylase 3-selective inhibitor RGFP966 ameliorates impaired glucose tolerance through \hat{l}^2 -cell protection. Toxicology and Applied Pharmacology, 2020, 406, 115189.	2.8	5
27	Maximal Unbiased Benchmarking Data Sets for Human Chemokine Receptors and Comparative Analysis. Journal of Chemical Information and Modeling, 2018, 58, 1104-1120.	5.4	4
28	Anti-MRSA drug discovery by ligand-based virtual screening and biological evaluation. Bioorganic Chemistry, 2021, 114, 105042.	4.1	4
29	A unique ligandâ€steered strategy for CC chemokine receptor 2 homology modeling to facilitate structureâ€based virtual screening. Chemical Biology and Drug Design, 2021, 97, 944-961.	3.2	3
30	Serum Pharmacochemistry Combining Network Pharmacology to Discover the Active Constituents and Effect of Xijiao Dihuang Tang Prescription for Treatment of Blood-Heat and Blood-Stasis Syndrome-Related Disease. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-25.	4.0	3