List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6973132/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal halide perovskite quantum dots for amphiprotic bio-imaging. Coordination Chemistry Reviews, 2022, 452, 214313.	9.5	37
2	Efficient fertilizer production from low phosphate water using in situ-formed vaterite/calcite calcite calcium carbonate composite microspheres. Science of the Total Environment, 2022, 822, 153620.	3.9	4
3	Designing Next Generation of Persistent Luminescence: Recent Advances in Uniform Persistent Luminescence Nanoparticles. Advanced Materials, 2022, 34, e2107962.	11.1	71
4	Dye Sensitization Offers a Brighter Afterglow Nanoparticle Future for inâ€vivo Recharged Luminescent Imaging. Chemistry - A European Journal, 2022, , .	1.7	2
5	Dual drive acute lethal toxicity of methylene blue to Daphnia magna by polystyrene microplastics and light. Science of the Total Environment, 2022, 840, 156681.	3.9	9
6	Enhancing Rechargeable Persistent Luminescence via Organic Dye Sensitization. Angewandte Chemie, 2021, 133, 16022-16026.	1.6	3
7	Innenrücktitelbild: Enhancing Rechargeable Persistent Luminescence via Organic Dye Sensitization (Angew. Chem. 29/2021). Angewandte Chemie, 2021, 133, 16375-16375.	1.6	0
8	Enhancing Rechargeable Persistent Luminescence via Organic Dye Sensitization. Angewandte Chemie - International Edition, 2021, 60, 15886-15890.	7.2	26
9	Three-Dimensional Colloidal Controlled Growth of Core–Shell Heterostructured Persistent Luminescence Nanocrystals. Nano Letters, 2021, 21, 4903-4910.	4.5	32
10	Two-in-one ultraviolet persistent luminescent catalyst suitable for high concentration photodegradation. Science of the Total Environment, 2020, 699, 134342.	3.9	7
11	Efficient natural organic matter removal from water using nano-MgO coupled with microfiltration membrane separation. Science of the Total Environment, 2020, 711, 135120.	3.9	20
12	Afterglow Nanoparticles: Coloring Afterglow Nanoparticles for High ontrast Timeâ€Gatingâ€Free Multiplex Luminescence Imaging (Adv. Mater. 49/2020). Advanced Materials, 2020, 32, 2070371.	11.1	0
13	Large-Fragment Deletions Induced by Cas9 Cleavage while Not in the BEs System. Molecular Therapy - Nucleic Acids, 2020, 21, 523-526.	2.3	48
14	Chemical vapor crosslinking of graphene oxide membranes for controlling nanochannels. Environmental Science: Nano, 2020, 7, 2924-2929.	2.2	16
15	Efficient arsanilic acid removal from water via reversible phase transition in a cyclic adsorption process based on reactivated MgO. Journal of Hazardous Materials Letters, 2020, 1, 100006.	2.0	2
16	Coloring Afterglow Nanoparticles for Highâ€Contrast Timeâ€Gatingâ€Free Multiplex Luminescence Imaging. Advanced Materials, 2020, 32, e2003881.	11.1	40
17	Vapor-phase linker exchange of metal-organic frameworks. Science Advances, 2020, 6, eaax7270.	4.7	76
18	Air-thermal processing of hierarchically porous metal–organic frameworks. Nanoscale, 2020, 12, 14171-14179.	2.8	7

#	Article	IF	CITATIONS
19	Enhanced removal of trace mercury from surface water using a novel Mg2Al layered double hydroxide supported iron sulfide composite. Chemical Engineering Journal, 2020, 393, 124635.	6.6	43
20	Graphene oxide membranes: controlling their transport pathways. Journal of Materials Chemistry A, 2020, 8, 15319-15340.	5.2	118
21	CRISPR/Cas9-mediated Disruption of Fibroblast Growth Factor 5 in Rabbits Results in a Systemic Long Hair Phenotype by Prolonging Anagen. Genes, 2020, 11, 297.	1.0	11
22	Strong influence of surfactants on virgin hydrophobic microplastics adsorbing ionic organic pollutants. Environmental Pollution, 2020, 265, 115061.	3.7	47
23	Phosphorus hyperaccumulation in nano-MgO using a circular recovery process based on multiple phase transitions from periclase to brucite. Science of the Total Environment, 2020, 727, 138510.	3.9	15
24	Surfactant stealth effect of microplastics in traditional coagulation process observed via 3-D fluorescence imaging. Science of the Total Environment, 2020, 729, 138783.	3.9	32
25	CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Computational and Structural Biotechnology Journal, 2020, 18, 2401-2415.	1.9	100
26	Alkali resistant nanocomposite gel beads as renewable adsorbents for water phosphate recovery. Science of the Total Environment, 2019, 685, 10-18.	3.9	19
27	Mutations of GADD45G in rabbits cause cleft lip by the disorder of proliferation, apoptosis and epithelial-mesenchymal transition (EMT). Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 2356-2367.	1.8	11
28	Ultrastable sandwich graphene oxide hollow fiber membranes with confined interlayer spacing. Journal of Materials Chemistry A, 2019, 7, 13007-13011.	5.2	20
29	Polydopamine-Modified Metal–Organic Framework Membrane with Enhanced Selectivity for Carbon Capture. Environmental Science & Technology, 2019, 53, 3764-3772.	4.6	93
30	In situ remediation of mercury-contaminated soil using thiol-functionalized graphene oxide/Fe-Mn composite. Journal of Hazardous Materials, 2019, 373, 783-790.	6.5	66
31	Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae. Cell, 2019, 177, 243-255.e15.	13.5	206
32	Facile defluoridation of drinking water by forming shell@fluorapatite nanoarray during boiling egg shell. Journal of Hazardous Materials, 2019, 361, 321-328.	6.5	25
33	Multicolor persistent luminescence realized by persistent color conversion. Journal of Luminescence, 2019, 207, 53-57.	1.5	12
34	Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	18
35	Hydrothermally Reduced Graphene Oxide Interfaces for Synthesizing Highâ€Performance Metal–Organic Framework Hollow Fiber Membranes. Advanced Materials Interfaces, 2018, 5, 1800032.	1.9	19
36	Controlling Interlayer Spacing of Graphene Oxide Membranes by External Pressure Regulation. ACS Nano, 2018, 12, 9309-9317.	7.3	178

#	Article	IF	CITATIONS
37	Confined interfacial polymerization of polyamide-graphene oxide composite membranes for water desalination. Desalination, 2018, 441, 77-86.	4.0	56
38	Sol–gel asynchronous crystallization of ultra-selective metal–organic framework membranes for gas separation. Journal of Materials Chemistry A, 2018, 6, 16333-16340.	5.2	47
39	Efficient Blue to Red Afterglow Tuning in a Binary Nanocomposite Plastic Film. Nanomaterials, 2018, 8, 260.	1.9	9
40	The "bottom-up―synthesis and applications of persistent luminescence nanoparticles. Science China Chemistry, 2018, 61, 757-758.	4.2	10
41	Upconversion Nanoparticles: Emerging â‰^800 nm Excited Lanthanideâ€Doped Upconversion Nanoparticles (Small 6/2017). Small, 2017, 13, .	5.2	0
42	Near-infrared light activated persistent luminescence nanoparticles via upconversion. Nano Research, 2017, 10, 1840-1846.	5.8	62
43	Emerging â‰^800 nm Excited Lanthanideâ€Đoped Upconversion Nanoparticles. Small, 2017, 13, 1602843.	5.2	92
44	Ultrathin metal–organic framework membrane production by gel–vapour deposition. Nature Communications, 2017, 8, 406.	5.8	233
45	Nanomedicine: Enhancing Photodynamic Therapy through Resonance Energy Transfer Constructed Nearâ€Infrared Photosensitized Nanoparticles (Adv. Mater. 28/2017). Advanced Materials, 2017, 29, .	11.1	1
46	Enhancing Photodynamic Therapy through Resonance Energy Transfer Constructed Nearâ€Infrared Photosensitized Nanoparticles. Advanced Materials, 2017, 29, 1604789.	11.1	154
47	Nanoscale "fluorescent stone― Luminescent Calcium Fluoride Nanoparticles as Theranostic Platforms. Theranostics, 2016, 6, 2380-2393.	4.6	41
48	BODIPYâ€Based Nanomicelles as Nearâ€Infrared Fluorescent "Turnâ€On―Sensors for Biogenic Thiols. ChemNanoMat, 2016, 2, 396-399.	1.5	12
49	llluminating Cell Signaling with Near-Infrared Light-Responsive Nanomaterials. ACS Nano, 2016, 10, 3881-3885.	7.3	71
50	CRISPR/Cas9-mediated mutation of <i>PHEX</i> in rabbit recapitulates human X-linked hypophosphatemia (XLH). Human Molecular Genetics, 2016, 25, ddw125.	1.4	42
51	Ultralow-Power Near Infrared Lamp Light Operable Targeted Organic Nanoparticle Photodynamic Therapy. Journal of the American Chemical Society, 2016, 138, 14586-14591.	6.6	275
52	CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Scientific Reports, 2016, 6, 22024.	1.6	54
53	Lanthanide-Doped Upconversion Nanoparticles for Imaging-Guided Drug Delivery and Therapy. Springer Series in Biomaterials Science and Engineering, 2016, , 139-164.	0.7	2
54	Dye-Sensitized Core/Active Shell Upconversion Nanoparticles for Optogenetics and Bioimaging Applications. ACS Nano, 2016, 10, 1060-1066.	7.3	395

#	Article	IF	CITATIONS
55	In Vivo Repeatedly Charging Nearâ€Infraredâ€Emitting Mesoporous SiO ₂ /ZnGa ₂ O ₄ :Cr ³⁺ Persistent Luminescence Nanocomposites. Advanced Science, 2015, 2, 1500001.	5.6	114
56	Upconverting NIR Photons for Bioimaging. Nanomaterials, 2015, 5, 2148-2168.	1.9	60
57	Direct Aqueous-Phase Synthesis of Sub-10 nm "Luminous Pearls―with Enhanced <i>in Vivo</i> Renewable Near-Infrared Persistent Luminescence. Journal of the American Chemical Society, 2015, 137, 5304-5307.	6.6	357
58	Tailoring dye-sensitized upconversion nanoparticle excitation bands towards excitation wavelength selective imaging. Nanoscale, 2015, 7, 18424-18428.	2.8	95
59	Upconversion Nanoparticles: A Versatile Solution to Multiscale Biological Imaging. Bioconjugate Chemistry, 2015, 26, 166-175.	1.8	178
60	Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation. ELife, 2015, 4, .	2.8	197
61	Highly controllable synthesis of near-infrared persistent luminescence SiO_2/CaMgSi_2O_6 composite nanospheres for imaging in vivo. Optics Express, 2014, 22, 10509.	1.7	39
62	Endothelial cell injury and dysfunction induced by silver nanoparticles through oxidative stress via IKK/NF-κB pathways. Biomaterials, 2014, 35, 6657-6666.	5.7	133
63	LiFePO4 microcrystals as an efficient heterogeneous Fenton-like catalyst in degradation of rhodamine 6G. Nanoscale Research Letters, 2014, 9, 276.	3.1	15
64	Persistent luminescent nanoparticles for super-long time in vivo and in situ imaging with repeatable excitation. Journal of Luminescence, 2014, 145, 838-842.	1.5	42
65	Preparation of stable luminescent poly(methyl methacrylate)–europium complex nanospheres and application in the detection of hydrogen peroxide with the biocatalytic growth of gold nanoparticles. Journal of Applied Polymer Science, 2013, 128, 845-850.	1.3	7
66	Facile synthesis and morphology control of Zn2SiO4:Mn nanophosphors using mesoporous silica nanoparticles as templates. Journal of Luminescence, 2013, 135, 79-83.	1.5	27
67	Red long-lasting phosphorescence based on color conversion process. Optical Materials, 2013, 35, 451-455.	1.7	16
68	Long-lasting phosphorescence functionalization of mesoporous silica nanospheres by CaTiO3:Pr3+ for drug delivery. Microporous and Mesoporous Materials, 2013, 176, 48-54.	2.2	32
69	A facile and effective method to prepare long-persistent phosphorescent nanospheres and its potential application for in vivo imaging. Journal of Materials Chemistry, 2012, 22, 24713.	6.7	62
70	Synthesis of ultrastable euâ€complex/polystyrene composite luminescent nanoparticles using a solvent swelling method. Polymer Composites, 2011, 32, 1712-1717.	2.3	11
71	A BODIPYâ€Based Farâ€Redâ€Absorbing Fluorescent Probe for Hypochlorous Acid Imaging. ChemPhotoChem, 0, , .	1.5	6