K C Barick

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6972856/publications.pdf

Version: 2024-02-01

		109264	118793
78	3,915	35	62
papers	citations	h-index	g-index
81	81	81	5568
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Development of citrate-stabilized Fe3O4 nanoparticles: Conjugation and release of doxorubicin for therapeutic applications. Journal of Magnetism and Magnetic Materials, 2011, 323, 237-243.	1.0	361
2	Surface engineered magnetic nanoparticles for removal of toxic metal ions and bacterial pathogens. Journal of Hazardous Materials, 2011, 192, 1539-1547.	6.5	296
3	Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Microporous and Mesoporous Materials, 2010, 134, 195-202.	2.2	186
4	Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens. Journal of Materials Chemistry A, 2013, 1, 3325.	5.2	186
5	Novel and efficient MR active aqueous colloidal Fe3O4 nanoassemblies. Journal of Materials Chemistry, 2009, 19, 7023.	6.7	144
6	Nanoscale assembly of mesoporous ZnO: A potential drug carrier. Journal of Materials Chemistry, 2010, 20, 6446.	6.7	135
7	Oxide and hybrid nanostructures for therapeutic applications. Advanced Drug Delivery Reviews, 2011, 63, 1267-1281.	6.6	115
8	Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures. Journal of Alloys and Compounds, 2011, 509, 6725-6730.	2.8	109
9	Carboxyl decorated Fe3O4 nanoparticles for MRI diagnosis and localized hyperthermia. Journal of Colloid and Interface Science, 2014, 418, 120-125.	5.0	105
10	Self-Aggregation and Assembly of Size-Tunable Transition Metal Doped ZnO Nanocrystals. Journal of Physical Chemistry C, 2008, 112, 15163-15170.	1.5	103
11	Functional Oxide Nanomaterials and Nanocomposites for the Removal of Heavy Metals and Dyes. Nanomaterials and Nanotechnology, 2013, 3, 20.	1.2	102
12	Polyvinyl alcohol: an efficient fuel for synthesis of superparamagnetic LSMO nanoparticles for biomedical application. Dalton Transactions, 2012, 41, 3060.	1.6	95
13	pHâ€Responsive Peptide Mimic Shell Crossâ€Linked Magnetic Nanocarriers for Combination Therapy. Advanced Functional Materials, 2012, 22, 4975-4984.	7.8	93
14	Folic acid conjugated Fe ₃ O ₄ magnetic nanoparticles for targeted delivery of doxorubicin. Dalton Transactions, 2016, 45, 17401-17408.	1.6	88
15	Non-aqueous to aqueous phase transfer of oleic acid coated iron oxide nanoparticles for hyperthermia application. RSC Advances, 2014, 4, 4515-4522.	1.7	87
16	Shape-controlled hierarchical ZnO architectures: photocatalytic and antibacterial activities. CrystEngComm, 2013, 15, 4631.	1.3	84
17	Recent advances in active targeting of nanomaterials for anticancer drug delivery. Advances in Colloid and Interface Science, 2021, 296, 102509.	7.0	84
18	Nanoscale assembly of amine-functionalized colloidal iron oxide. Journal of Magnetism and Magnetic Materials, 2009, 321, 1529-1532.	1.0	75

#	Article	IF	CITATIONS
19	Superparamagnetic iron oxide/chitosan core/shells for hyperthermia application: Improved colloidal stability and biocompatibility. Journal of Magnetism and Magnetic Materials, 2014, 355, 22-30.	1.0	67
20	Highly water-dispersible surface-functionalized LSMO nanoparticles for magnetic fluid hyperthermia application. New Journal of Chemistry, 2013, 37, 2733.	1.4	60
21	Rod-like micelle templated synthesis of porous hydroxyapatite. Ceramics International, 2013, 39, 8995-9002.	2.3	56
22	Glycine passivated Fe3O4 nanoparticles for thermal therapy. Journal of Colloid and Interface Science, 2012, 369, 96-102.	5.0	54
23	PEG mediated shape-selective synthesis of cubic Fe3O4 nanoparticles for cancer therapeutics. Journal of Alloys and Compounds, 2018, 737, 347-355.	2.8	53
24	Inactivation of bacterial pathogens under magnetic hyperthermia using Fe3O4–ZnO nanocomposite. Powder Technology, 2015, 269, 513-519.	2.1	52
25	Polyaniline shell cross-linked Fe ₃ O ₄ magnetic nanoparticles for heat activated killing of cancer cells. Dalton Transactions, 2014, 43, 12263-12271.	1.6	51
26	pH sensitive surfactant-stabilized Fe3O4 magnetic nanocarriers for dual drug delivery. Colloids and Surfaces B: Biointerfaces, 2018, 162, 163-171.	2.5	51
27	Biocompatible phosphate anchored Fe ₃ O ₄ nanocarriers for drug delivery and hyperthermia. New Journal of Chemistry, 2014, 38, 5500-5508.	1.4	48
28	Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application. International Journal of Biological Macromolecules, 2021, 166, 851-860.	3.6	48
29	NOVEL AND EFFICIENT THREE DIMENSIONAL MESOPOROUS ZnO NANOASSEMBLIES FOR ENVIRNOMENTAL REMEDIATION. International Journal of Nanoscience, 2011, 10, 1001-1005.	0.4	41
30	Citrate-functionalized hydroxyapatite nanoparticles for pH-responsive drug delivery. RSC Advances, 2016, 6, 77968-77976.	1.7	41
31	Effect of sugar alcohol on colloidal stabilization of magnetic nanoparticles for hyperthermia and drug delivery applications. Journal of Alloys and Compounds, 2017, 725, 800-806.	2.8	41
32	Heat-induced solubilization of curcumin in kinetically stable pluronic P123 micelles and vesicles: An exploit of slow dynamics of the micellar restructuring processes in the aqueous pluronic system. Colloids and Surfaces B: Biointerfaces, 2017, 152, 176-182.	2.5	40
33	Pluronic stabilized Fe ₃ O ₄ magnetic nanoparticles for intracellular delivery of curcumin. RSC Advances, 2016, 6, 98674-98681.	1.7	39
34	Enhancement in multiferroic properties of system with removal of La. Solid State Communications, 2009, 149, 188-191.	0.9	37
35	Glutamic acid-coated Fe3O4 nanoparticles for tumor-targeted imaging and therapeutics. Materials Science and Engineering C, 2020, 112, 110915.	3.8	37
36	Preparation of nanocrystalline MnFe2O4 by doping with Ti4+ ions using solid-state reaction route. Journal of Magnetism and Magnetic Materials, 2006, 307, 222-226.	1.0	36

#	Article	IF	Citations
37	Water-dispersible polyphosphate-grafted Fe ₃ O ₄ nanomagnets for cancer therapy. RSC Advances, 2015, 5, 86754-86762.	1.7	34
38	Curcumin Encapsulated Casein Nanoparticles: Enhanced Bioavailability and Anticancer Efficacy. Journal of Pharmaceutical Sciences, 2021, 110, 2114-2120.	1.6	31
39	Processing, properties and some novel applications of magnetic nanoparticles. Pramana - Journal of Physics, 2005, 65, 663-679.	0.9	30
40	Structural and magnetic properties of \hat{l}^3 - and $\hat{l}\mu$ -Fe2O3 nanoparticles dispersed in silica matrix. Journal of Non-Crystalline Solids, 2010, 356, 153-159.	1.5	30
41	pH-Labile Magnetic Nanocarriers for Intracellular Drug Delivery to Tumor Cells. ACS Omega, 2019, 4, 11728-11736.	1.6	30
42	Synthesis, Self-Assembly, and Properties of Mn Doped ZnO Nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 1935-1940.	0.9	29
43	Roles of solvent, annealing and Bi3+ co-doping on the crystal structure and luminescence properties of YPO4:Eu3+ nanoparticles. RSC Advances, 2015, 5, 68234-68242.	1.7	29
44	Covalent bridging of surface functionalized Fe ₃ O ₄ and YPO ₄ :Eu nanostructures for simultaneous imaging and therapy. Dalton Transactions, 2015, 44, 14686-14696.	1.6	28
45	Covalent immobilization of doxorubicin in glycine functionalized hydroxyapatite nanoparticles for pH-responsive release. New Journal of Chemistry, 2018, 42, 6283-6292.	1.4	28
46	Counter ion induced irreversible denaturation of hen egg white lysozyme upon electrostatic interaction with iron oxide nanoparticles: A predicted model. Colloids and Surfaces B: Biointerfaces, 2013, 103, 267-274.	2.5	27
47	Core-shell Fe3O4@ZnO nanoparticles for magnetic hyperthermia and bio-imaging applications. AIP Advances, 2021, 11 , .	0.6	25
48	Fabrication and properties of Co doped ZnO spherical assemblies. Journal of Alloys and Compounds, 2014, 587, 282-286.	2.8	23
49	Assembly of Fe3O4 nanoparticles on SiO2 monodisperse spheres. Bulletin of Materials Science, 2006, 29, 595-598.	0.8	21
50	Controlled fabrication of oriented co-doped ZnO clustered nanoassemblies. Journal of Colloid and Interface Science, 2010, 349, 19-26.	5.0	21
51	Protein nanoparticle electrostatic interaction: Size dependent counterions induced conformational change of hen egg white lysozyme. Colloids and Surfaces B: Biointerfaces, 2014, 118, 1-6.	2.5	21
52	PEG coated vesicles from mixtures of Pluronic P123 and <scp>l</scp> -α-phosphatidylcholine: structure, rheology and curcumin encapsulation. Physical Chemistry Chemical Physics, 2017, 19, 26821-26832.	1.3	18
53	Malic acid grafted Fe3O4 nanoparticles for controlled drug delivery and efficient heating source for hyperthermia therapy. Journal of Alloys and Compounds, 2021, 883, 160950.	2.8	17
54	Self-Assembly of Colloidal Nanoscale Particles: Fabrication, Properties and Applications. Journal of Nanoscience and Nanotechnology, 2010, 10, 668-689.	0.9	15

#	Article	IF	Citations
55	Facile preparation of Silicon/ZnO thin film heterostructures and ultrasensitive toxic gas sensing at room temperature: Substrate dependence on specificity. Analytica Chimica Acta, 2018, 1039, 82-90.	2.6	15
56	Stimuli Responsive Carboxyl PEGylated Fe ₃ O ₄ Nanoparticles for Therapeutic Applications. Journal of Nanofluids, 2015, 4, 421-427.	1.4	15
57	Selective binding of proteins on functional nanoparticles via reverse charge parity model: an <i>in vitro</i> study. Materials Research Express, 2014, 1, 015017.	0.8	14
58	Effect of cetylpyridinium chloride on surface passivation and photocatalytic activity of ZnO nanostructures. Journal of Environmental Chemical Engineering, 2015, 3, 1346-1355.	3.3	13
59	Micellar assisted aqueous stabilization of iron oxide nanoparticles for curcumin encapsulation and hyperthermia application. Nano Structures Nano Objects, 2020, 22, 100466.	1.9	13
60	Fe3+ doped SiO2 nanostructured gel-glasses: Structural, optical and magnetic properties. Journal of Non-Crystalline Solids, 2005, 351, 3693-3698.	1.5	10
61	Influence of Mn Doping on Structural and Vibrational Properties of Self-Assembled Mn Doped ZnO Nanocrystals. Journal of Nanoscience and Nanotechnology, 2008, 8, 4263-4267.	0.9	10
62	Defects in three-dimensional spherical assemblies of Ni-doped ZnO nanocrystals. Journal of Materials Research, 2009, 24, 3543-3550.	1.2	10
63	Thermal and microwave synthesized SPIONs: Energy effects on the efficiency of nano drug carriers. Materials Science and Engineering C, 2020, 111, 110792.	3.8	10
64	Gelatin grafted Fe3O4 based curcumin nanoformulation for cancer therapy. Journal of Drug Delivery Science and Technology, 2022, 67, 102974.	1.4	9
65	Defects in nanomaterials for visible light photocatalysis. , 2022, , 319-350.		8
66	Structural, photoluminescence, and photocatalytic properties of Mn and Eu co-doped ZnO nanoparticles. Materials Today: Proceedings, 2021, 42, 926-931.	0.9	6
67	Electrostatically bound lanreotide peptide - gold nanoparticle conjugates for enhanced uptake in SSTR2-positive cancer cells. Materials Science and Engineering C, 2020, 117, 111272.	3.8	5
68	Phenylseleno $\langle i \rangle N \langle i \rangle$ -Acetyl α-Amino Acids Conjugated Magnetic Nanoparticles: Synthesis, Characterization and Radical Scavenging Ability. Chemistry Letters, 2020, 49, 1426-1430.	0.7	4
69	Altering the X-ray Scattering Contrast of Triton X-100 Micelles and Its Trapping in a Supercooled Solvent. Journal of Physical Chemistry B, 2020, 124, 3418-3427.	1.2	4
70	Surface engineering of iron oxide nanoparticles for cancer therapy. Biomedical Research Journal, 2017, 4, 49.	0.4	3
71	Nanomagnetic chelators for removal of toxic metal ions. , 2013, , .		2
72	Folate-conjugated luminescent Fe3O4 nanoparticles for magnetic hyperthermia., 2014,,.		2

#	Article	IF	CITATIONS
73	PEG functionalized luminescent lipid particles for cellular imaging. Chemical Physics Letters, 2016, 659, 225-229.	1.2	1
74	Triton X-100 functionalized Fe3O4 nanoparticles for biomedical applications. AIP Conference Proceedings, 2018, , .	0.3	1
75	Ag nanodots decorated SiO2 coated ZnO core-shell nanostructure with enhanced luminescence property as potential imaging agent. AIP Conference Proceedings, 2018, , .	0.3	1
76	Multifunctional growth of dendritic magnetic nanocarrier for targeted drug delivery. Materials Today: Proceedings, 2021, 43, 3286-3290.	0.9	1
77	Surface decorated Fe3O4 nanoparticles for magnetic hyperthermia. AIP Conference Proceedings, 2017, ,	0.3	O
78	Oxide-based magnetic nanoparticles: preparation, properties, functionalization, and applications in biomedical and environmental fields., 2022,, 255-289.		0