John Spencer Evans

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6972394/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Glycosylation: A "Last Word―in the Protein-Mediated Biomineralization Process. Crystals, 2020, 10, 818.	1.0	5
2	A Complicated Relationship: Glycosylation, Ca(II), and Primary Sequence Affect the Interactions and Kinetics between Two Model Mollusk Shell Intracrystalline Nacre Proteins. Biochemistry, 2020, 59, 346-350.	1.2	3
3	Skeletal development in the sea urchin relies upon protein families that contain intrinsic disorder, aggregation-prone, and conserved globular interactive domains. PLoS ONE, 2019, 14, e0222068.	1.1	3
4	The Biomineralization Proteome: Protein Complexity for a Complex Bioceramic Assembly Process. Proteomics, 2019, 19, e1900036.	1.3	36
5	Composite Materials Design: Biomineralization Proteins and the Guided Assembly and Organization of Biomineral Nanoparticles. Materials, 2019, 12, 581.	1.3	26
6	Title is missing!. , 2019, 14, e0222068.		0
7	Title is missing!. , 2019, 14, e0222068.		Ο
8	Title is missing!. , 2019, 14, e0222068.		0
9	Title is missing!. , 2019, 14, e0222068.		0
10	Selective Synergism Created by Interactive Nacre Framework-Associated Proteins Possessing EGF and vWA Motifs: Implications for Mollusk Shell Formation. Biochemistry, 2018, 57, 2657-2666.	1.2	12
11	Noninvasive Microcomputerized X-ray Tomography Visualization of Mineralization Directed by Sea Urchin- and Nacre-Specific Proteins. Crystal Growth and Design, 2018, 18, 1768-1775.	1.4	4
12	Insights into Mollusk Shell Formation: Interlamellar and Lamellar-Specific Nacre Protein Hydrogels Differ in Ion Interaction Signatures. Journal of Physical Chemistry B, 2018, 122, 1161-1168.	1.2	9
13	Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation. ACS Omega, 2018, 3, 11823-11830.	1.6	9
14	Glycosylation Fosters Interactions between Model Sea Urchin Spicule Matrix Proteins. Implications for Embryonic Spiculogenesis and Biomineralization. Biochemistry, 2018, 57, 3032-3035.	1.2	9
15	Intracrystalline incorporation of nacre protein hydrogels modifies the mechanical properties of calcite crystals: a microcompression study. Journal of Materials Chemistry B, 2018, 6, 4191-4196.	2.9	5
16	Sea Urchin Spicule Matrix Proteins Form Mesoscale "Smart―Hydrogels That Exhibit Selective Ion Interactions. ACS Omega, 2017, 2, 6151-6158.	1.6	10
17	Functional Prioritization and Hydrogel Regulation Phenomena Created by a Combinatorial Pearl-Associated Two-Protein Biomineralization Model System. Biochemistry, 2017, 56, 3607-3618.	1.2	15
18	Polymorphs, Proteins, and Nucleation Theory: A Critical Analysis. Minerals (Basel, Switzerland), 2017, 7, 62.	0.8	17

JOHN SPENCER EVANS

#	Article	IF	CITATIONS
19	A Model Sea Urchin Spicule Matrix Protein, rSpSM50, Is a Hydrogelator That Modifies and Organizes the Mineralization Process. Biochemistry, 2017, 56, 2663-2675.	1.2	18
20	Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System. Biochemistry, 2016, 55, 2401-2410.	1.2	25
21	A nacre protein forms mesoscale hydrogels that "hijack―the biomineralization process within a seawater environment. CrystEngComm, 2016, 18, 7675-7679.	1.3	10
22	A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels. Biochemistry, 2016, 55, 4410-4421.	1.2	22
23	Aragonite-Associated Mollusk Shell Protein Aggregates To Form Mesoscale "Smart―Hydrogels. ACS Omega, 2016, 1, 886-893.	1.6	15
24	Insect Cell Glycosylation and Its Impact on the Functionality of a Recombinant Intracrystalline Nacre Protein, AP24. Biochemistry, 2016, 55, 1024-1035.	1.2	22
25	Pif97, a von Willebrand and Peritrophin Biomineralization Protein, Organizes Mineral Nanoparticles and Creates Intracrystalline Nanochambers. Biochemistry, 2015, 54, 5348-5355.	1.2	46
26	Focused Ion Beam Tomography Reveals the Presence of Micro-, Meso-, and Macroporous Intracrystalline Regions Introduced into Calcite Crystals by the Gastropod Nacre Protein AP7. Crystal Growth and Design, 2015, 15, 1577-1582.	1.4	14
27	An Oligomeric C-RING Nacre Protein Influences Prenucleation Events and Organizes Mineral Nanoparticles. Biochemistry, 2014, 53, 7259-7268.	1.2	33
28	Structural adaptation of tooth enamel protein amelogenin in the presence of SDS micelles. Biopolymers, 2014, 101, 525-535.	1.2	14
29	Engineering of crystal surfaces and subsurfaces by framework biomineralization protein phases. CrystEngComm, 2014, 16, 7406-7409.	1.3	19
30	A Nacre Protein, n16.3, Self-Assembles To Form Protein Oligomers That Dimensionally Limit and Organize Mineral Deposits. Biochemistry, 2014, 53, 2739-2748.	1.2	36
31	The Intrinsically Disordered C-RING Biomineralization Protein, AP7, Creates Protein Phases That Introduce Nanopatterning and Nanoporosities into Mineral Crystals. Biochemistry, 2014, 53, 4317-4319.	1.2	22
32	"Liquid-like―biomineralization protein assemblies: a key to the regulation of non-classical nucleation. CrystEngComm, 2013, 15, 8388.	1.3	40
33	A Pearl Protein Self-Assembles To Form Protein Complexes That Amplify Mineralization. Biochemistry, 2013, 52, 5696-5703.	1.2	24
34	Cooperative Modulation of Mineral Growth by Prismatic-Associated Asprich Sequences and Mg(II). International Journal of Molecular Sciences, 2012, 13, 3949-3958.	1.8	13
35	Aragonite-associated biomineralization proteins are disordered and contain interactive motifs. Bioinformatics, 2012, 28, 3182-3185.	1.8	74
36	Oligomer formation, metalation, and the existence of aggregation-prone and mobile sequences within the intracrystalline protein family, Asprich. Faraday Discussions, 2012, 159, 449.	1.6	8

JOHN SPENCER EVANS

#	Article	IF	CITATIONS
37	A C-RING-like Domain Participates in Protein Self-Assembly and Mineral Nucleation. Biochemistry, 2011, 50, 8880-8887.	1.2	25
38	Polymorph Crystal Selection by n16, an Intrinsically Disordered Nacre Framework Protein. Crystal Growth and Design, 2011, 11, 4690-4696.	1.4	38
39	Formation of Framework Nacre Polypeptide Supramolecular Assemblies That Nucleate Polymorphs. Biomacromolecules, 2011, 12, 1883-1890.	2.6	31
40	Probing the selfâ€association, intermolecular contacts, and folding propensity of amelogenin. Protein Science, 2011, 20, 724-734.	3.1	28
41	Nacre Protein Fragment Templates Lamellar Aragonite Growth. Journal of the American Chemical Society, 2010, 132, 6329-6334.	6.6	108
42	"Tuning in―to Mollusk Shell Nacre- and Prismatic-Associated Protein Terminal Sequences. Implications for Biomineralization and the Construction of High Performance Inorganicâ^'Organic Composites. Chemical Reviews, 2008, 108, 4455-4462.	23.0	148
43	Molecular Design of Inorganic-Binding Polypeptides. MRS Bulletin, 2008, 33, 514-518.	1.7	45
44	Identification of an "Acidic―C-Terminal Mineral Modification Sequence from the Mollusk Shell Protein Asprich. Crystal Growth and Design, 2006, 6, 839-842.	1.4	30
45	Molecular "Tuning―of Crystal Growth by Nacre-Associated Polypeptides. Crystal Growth and Design, 2006, 6, 5-10.	1.4	60
46	Molecular characterization of a prokaryotic polypeptide sequence that catalyzes Au crystal formation. Journal of Materials Chemistry, 2004, 14, 2325.	6.7	43
47	Characterization of two molluscan crystal-modulating biomineralization proteins and identification of putative mineral binding domains. Biopolymers, 2003, 70, 522-533.	1.2	159
48	Structure-Function Studies of the Lustrin A Polyelectrolyte Domains, RKSY and D4. Connective Tissue Research, 2003, 44, 10-15.	1.1	31
49	Structure-Function Studies of the Lustrin A Polyelectrolyte Domains, RKSY and D4. Connective Tissue Research, 2003, 44, 10-15.	1.1	1
50	Molecular Dynamics Simulations of Template-Assisted Nucleation:Â Alcohol Monolayers at the Airâ°'Water Interface and Ice Formation. Journal of Physical Chemistry B, 2001, 105, 10831-10837.	1.2	16
51	Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. II. Pro,Asn-Rich tandem repeats. Biopolymers, 2000, 54, 464-475.	1.2	34
52	An energy-based mapping method for identifying the in-plane orientations of polypeptides and other macromolecules at crystalline interfaces. Journal of Chemical Physics, 2000, 112, 5144-5157.	1.2	8
53	Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. I. GVGGR and GMGGQ repeats. Biopolymers, 1999, 49, 303-312.	1.2	34
54	Hostâ^'Guest Interactions Influence Stability of the Rebek "Tennis Ball―Dimer Complex. Journal of Organic Chemistry, 1998, 63, 8027-8030.	1.7	7

#	Article	IF	CITATIONS
55	Polypeptide Interactions at Ice and Biomineral Interfaces Are Defined by Secondary Structure-Dependent Chain Orientationsâ€. Journal of Physical Chemistry B, 1997, 101, 6665-6669.	1.2	9