
Gerasimos P Sykiotis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6972292/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nature Reviews Clinical Oncology, 2019, 16, 563-580.	27.6	1,235
2	Stress-Activated Cap'n'collar Transcription Factors in Aging and Human Disease. Science Signaling, 2010, 3, re3.	3.6	660
3	Keap1/Nrf2 Signaling Regulates Oxidative Stress Tolerance and Lifespan in Drosophila. Developmental Cell, 2008, 14, 76-85.	7.0	577
4	Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15140-15144.	7.1	313
5	Mutations in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 Are Identified in Individuals with Congenital Hypogonadotropic Hypogonadism. American Journal of Human Genetics, 2013, 92, 725-743.	6.2	227
6	A Genetic Basis for Functional Hypothalamic Amenorrhea. New England Journal of Medicine, 2011, 364, 215-225.	27.0	219
7	The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Current Opinion in Clinical Nutrition and Metabolic Care, 2011, 14, 41-48.	2.5	191
8	Nrf2 Represses FGF21 During Long-Term High-Fat Diet–Induced Obesity in Mice. Diabetes, 2011, 60, 2465-2473.	0.6	154
9	<i>Heparan sulfate 6-O-sulfotransferase 1</i> , a gene involved in extracellular sugar modifications, is mutated in patients with idiopathic hypogonadotrophic hypogonadism. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11524-11529.	7.1	153
10	New therapeutic perspectives to manage refractory immune checkpoint-related toxicities. Lancet Oncology, The, 2019, 20, e54-e64.	10.7	149
11	Genetic Overlap in Kallmann Syndrome, Combined Pituitary Hormone Deficiency, and Septo-Optic Dysplasia. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E694-E699.	3.6	136
12	Trial of Recombinant Follicle-Stimulating Hormone Pretreatment for GnRH-Induced Fertility in Patients with Congenital Hypogonadotropic Hypogonadism. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1790-E1795.	3.6	124
13	Congenital Idiopathic Hypogonadotropic Hypogonadism: Evidence of Defects in the Hypothalamus, Pituitary, and Testes. Journal of Clinical Endocrinology and Metabolism, 2010, 95, 3019-3027.	3.6	115
14	Genetic activation of Nrf2 signaling is sufficient to ameliorate neurodegenerative phenotypes in a <i>Drosophila</i> model of Parkinson's disease. DMM Disease Models and Mechanisms, 2011, 4, 701-707.	2.4	109
15	Proteasome dysfunction in <i>Drosophila</i> signals to an Nrf2-dependent regulatory circuit aiming to restore proteostasis and prevent premature aging. Aging Cell, 2013, 12, 802-813.	6.7	98
16	Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures. European Journal of Endocrinology, 2018, 178, 377-388.	3.7	95
17	Serine Phosphorylation of Insulin Receptor Substrate-1: A Novel Target for the Reversal of Insulin Resistance. Molecular Endocrinology, 2001, 15, 1864-1869.	3.7	94
18	Declining signal dependence of <scp>N</scp> rf2â€ <scp>M</scp> af <scp>S</scp> â€regulated gene expression correlates with aging phenotypes. Aging Cell, 2013, 12, 554-562.	6.7	91

GERASIMOS P SYKIOTIS

#	Article	IF	CITATIONS
19	Differential regulation of proteasome functionality in reproductive <i>vs.</i> somatic tissues of <i>Drosophila</i> during aging or oxidative stress. FASEB Journal, 2013, 27, 2407-2420.	0.5	85
20	<i> <scp>KLB</scp> </i> , encoding βâ€Klotho, is mutated in patients with congenital hypogonadotropic hypogonadism. EMBO Molecular Medicine, 2017, 9, 1379-1397.	6.9	77
21	A Bibliometric Review of the Keap1/Nrf2 Pathway and its Related Antioxidant Compounds. Antioxidants, 2019, 8, 353.	5.1	72
22	Complex Genetics in Idiopathic Hypogonadotropic Hypogonadism. Frontiers of Hormone Research, 2010, 39, 142-153.	1.0	57
23	Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genetics in Medicine, 2015, 17, 651-659.	2.4	55
24	Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation. Aging Cell, 2019, 18, e12845.	6.7	53
25	Pharmacogenetic Principles in the Hippocratic Writings. Journal of Clinical Pharmacology, 2005, 45, 1218-1220.	2.0	51
26	Erythropoietin Abuse and Erythropoietin Gene Doping. Sports Medicine, 2005, 35, 831-840.	6.5	50
27	CRISPR/Cas9 genome-wide screening identifies KEAP1 as a sorafenib, lenvatinib, and regorafenib sensitivity gene in hepatocellular carcinoma. Oncotarget, 2019, 10, 7058-7070.	1.8	50
28	Deciphering Genetic Disease in the Genomic Era: The Model of GnRH Deficiency. Science Translational Medicine, 2010, 2, 32rv2.	12.4	48
29	DCC/NTN1 complex mutations in patients with congenital hypogonadotropic hypogonadism impair GnRH neuron development. Human Molecular Genetics, 2018, 27, 359-372.	2.9	42
30	β-Klotho deficiency protects against obesity through a crosstalk between liver, microbiota, and brown adipose tissue. JCI Insight, 2017, 2, .	5.0	41
31	Autonomously functioning thyroid nodules in a former iodine-deficient area commonly harbor gain-of-function mutations in the thyrotropin signaling pathway. European Journal of Endocrinology, 2003, 149, 287-292.	3.7	40
32	Broccoli sprout beverage is safe for thyroid hormonal and autoimmune status: Results of a 12-week randomized trial. Food and Chemical Toxicology, 2019, 126, 1-6.	3.6	35
33	Very low expression of PD-L1 in medullary thyroid carcinoma. Endocrine-Related Cancer, 2017, 24, L35-L38.	3.1	34
34	Impact of Thyroid Hormone Therapy on Atherosclerosis in the Elderly With Subclinical Hypothyroidism: A Randomized Trial. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 2988-2997.	3.6	34
35	Functional significance of the thyrotropin receptor germline polymorphism D727E. Biochemical and Biophysical Research Communications, 2003, 301, 1051-1056.	2.1	33
36	Columnar cell variant of papillary thyroid carcinoma: Cytomorphological characteristics of 11 cases with histological correlation and literature review. Cancer Cytopathology, 2017, 125, 389-397.	2.4	32

#	Article	IF	CITATIONS
37	An ancient founder mutation in PROKR2 impairs human reproduction. Human Molecular Genetics, 2012, 21, 4314-4324.	2.9	31
38	The Impact of Levothyroxine on Cardiac Function in Older Adults With Mild Subclinical Hypothyroidism: A Randomized Clinical Trial. American Journal of Medicine, 2020, 133, 848-856.e5.	1.5	31
39	NFE2-Related Transcription Factor 2 Coordinates Antioxidant Defense with Thyroglobulin Production and Iodination in the Thyroid Gland. Thyroid, 2018, 28, 780-798.	4.5	30
40	Keap1/Nrf2 Signaling: A New Player in Thyroid Pathophysiology and Thyroid Cancer. Frontiers in Endocrinology, 2019, 10, 510.	3.5	30
41	Nrf2 Is Commonly Activated in Papillary Thyroid Carcinoma, and It Controls Antioxidant Transcriptional Responses and Viability of Cancer Cells. Journal of Clinical Endocrinology and Metabolism, 2013, 98, E1422-E1427.	3.6	29
42	The dietary triterpenoid 18α–Glycyrrhetinic acid protects from MMC-induced genotoxicity through the ERK/Nrf2 pathway. Redox Biology, 2020, 28, 101317.	9.0	27
43	Approach to cytological indeterminate thyroid nodules. Gland Surgery, 2019, 8, S98-S104.	1.1	24
44	Hepatic Gene Expression Profiling in Nrf2 Knockout Mice after Long-Term High-Fat Diet-Induced Obesity. Oxidative Medicine and Cellular Longevity, 2013, 2013, 1-17.	4.0	22
45	Macrofollicular Variant of Follicular Thyroid Carcinoma: A Rare Underappreciated Pitfall in the Diagnosis of Thyroid Carcinoma. Thyroid, 2020, 30, 72-80.	4.5	22
46	Raman spectroscopy for the preoperative diagnosis of thyroid cancer and its subtypes: An inÂvitro proofâ€ofâ€concept study. Cytopathology, 2019, 30, 51-60.	0.7	21
47	The Keap1/Nrf2 Signaling Pathway in the Thyroid—2020 Update. Antioxidants, 2020, 9, 1082.	5.1	21
48	Impact of Antioxidant Natural Compounds on the Thyroid Gland and Implication of the Keap1/Nrf2 Signaling Pathway. Current Pharmaceutical Design, 2019, 25, 1828-1846.	1.9	19
49	Nrf2 activation diminishes during adipocyte differentiation of ST2 cells. International Journal of Molecular Medicine, 2011, 28, 823-8.	4.0	17
50	The Bethesda System for Reporting Thyroid Cytopathology Explained for Practitioners: Frequently Asked Questions. Thyroid, 2018, 28, 556-565.	4.5	17
51	Rare and common genetic variations in the Keap1/Nrf2 antioxidant response pathway impact thyroglobulin gene expression and circulating levels, respectively. Biochemical Pharmacology, 2020, 173, 113605.	4.4	16
52	The α2B adrenergic receptor deletion/insertion polymorphism in morbid obesity. Clinical Autonomic Research, 2003, 13, 203-207.	2.5	15
53	Keap1/Nrf2 Signaling Pathway. Antioxidants, 2021, 10, 828.	5.1	15
54	Hippocrates and Genomic Medicine. Archives of Medical Research, 2006, 37, 181-183.	3.3	13

GERASIMOS P SYKIOTIS

#	Article	IF	CITATIONS
55	Interaction of Genetic Variations inNFE2L2andSELENOSModulates the Risk of Hashimoto's Thyroiditis. Thyroid, 2019, 29, 1302-1315.	4.5	12
56	Patent Review (2017–2020) of the Keap1/Nrf2 Pathway Using PatSeer Pro: Focus on Autoimmune Diseases. Antioxidants, 2020, 9, 1138.	5.1	11
57	Selective modulation of postmenopausal women. Cancer, 2003, 97, 12-20.	4.1	10
58	The Transcriptomic Response of the Murine Thyroid Gland to Iodide Overload and the Role of the Nrf2 Antioxidant System. Antioxidants, 2020, 9, 884.	5.1	10
59	Mice Hypomorphic for <i>Keap1</i> , a Negative Regulator of the Nrf2 Antioxidant Response, Show Age-Dependent Diffuse Goiter with Elevated Thyrotropin Levels. Thyroid, 2021, 31, 23-35.	4.5	9
60	Hepatic Fgf21 Expression Is Repressed after Simvastatin Treatment in Mice. PLoS ONE, 2016, 11, e0162024.	2.5	9
61	Dexamethasone Administration in Mice Leads to Less Body Weight Gain over Time, Lower Serum Glucose, and Higher Insulin Levels Independently of NRF2. Antioxidants, 2022, 11, 4.	5.1	9
62	Apoptosis: the suicide solution in cancer treatment and chemoprevention. Expert Opinion on Investigational Drugs, 2006, 15, 575-577.	4.1	8
63	A Simple Protocol for High Efficiency Protein Isolation After RNA Isolation from Mouse Thyroid and Other Very Small Tissue Samples. Methods in Molecular Biology, 2016, 1449, 383-393.	0.9	7
64	Subclinical hypothyroidism: new trials, old caveats. Hormones, 2018, 17, 231-236.	1.9	6
65	Educational Level Is Related to Physical Fitness in Patients with Type 2 Diabetes – A Cross-Sectional Study. PLoS ONE, 2016, 11, e0164176.	2.5	6
66	Molecular mechanisms of transcriptional regulation by nuclear receptors. Perspectives for therapeutic implications. Hormones, 2002, 1, 69-75.	1.9	6
67	Denosumab for the Treatment of Hypercalcemia in a Patient With Parathyroid Carcinoma: A Case Report. Frontiers in Endocrinology, 2021, 12, 794988.	3.5	6
68	Papillary Thyroid Carcinoma with Desmoid-Type Fibromatosis: Review of Published Cases. Cancers, 2021, 13, 4482.	3.7	5
69	Expression of Prox1 in Medullary Thyroid Carcinoma Is Associated with Chromogranin A and Calcitonin Expression and with Ki67 Proliferative Index, but Not with Prognosis. Endocrine Pathology, 2019, 30, 138-145.	9.0	4
70	Rapid Remission of Graves' Hyperthyroidism Without Thionamides Under Immunosuppressive Treatment for Concomitant Autoimmune Hepatitis. Thyroid, 2018, 28, 276-278.	4.5	3
71	CTNNB1 mutations in papillary thyroid carcinoma with prominent myofibroblastic stromal component. Modern Pathology, 2021, 34, 2087-2088.	5.5	3
72	Stress-activated Protein Kinase Signaling in Drosophila. , 2007, , 225-241.		3

5

GERASIMOS P SYKIOTIS

#	Article	IF	CITATIONS
73	Endocrine and neuroendocrine cytopathology. Minerva Endocrinology, 2018, 43, 294-304.	1.1	3
74	Targeting the nerve growth factor network in Alzheimer's disease. Expert Opinion on Investigational Drugs, 2007, 16, 267-269.	4.1	2
75	Uptake of 99mTc-MIBI by Sclerosing Pneumocytoma Raising a False Suspicion of Metastasis From Medullary Thyroid Carcinoma. Journal of the Endocrine Society, 2018, 2, 386-390.	0.2	2
76	Molecular medicine: a lifetime of learning, teaching and caring. Trends in Molecular Medicine, 2005, 11, 484-485.	6.7	1
77	Redox Status and Proteostasis in Ageing and Disease. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-2.	4.0	1
78	Relapse of Human Chorionic Gonadotropin-Induced Hyperthyroidism and Severe Hyperemesis Gravidarum Secondary to Twin-Twin Transfusion Syndrome, With Rapid Recovery Following Fetoscopic Laser Coagulation: Case Report. Frontiers in Endocrinology, 2021, 12, 705567.	3.5	1
79	Molecular Analyses Of The Effects Induced By Orally Administered Bortezomib In Drosophila Flies: A Novel In Vivo Experimental Platform To Screen For The Tissue- and Age-Dependent Effects Of Proteasome Inhibitors. Blood, 2013, 122, 2910-2910.	1.4	1
80	Molecular Medicine and biomedical education: reshaping our mission. Hormones, 2006, 5, 87-89.	1.9	1
81	NFE2L2 (nuclear factor, erythroid 2-like 2). Atlas of Genetics and Cytogenetics in Oncology and Haematology, 2017, , .	0.1	1
82	Thyroid Disorders in Patients Treated with Dimethyl Fumarate for Multiple Sclerosis: A Retrospective Observational Study. Antioxidants, 2022, 11, 1015.	5.1	1
83	A Genetic Basis for Functional Hypothalamic Amenorrhea. Obstetrical and Gynecological Survey, 2011, 66, 618-619.	0.4	0
84	Hyperactivation of Nrf2 increases stress tolerance at the cost of aging acceleration due to metabolic deregulation. Free Radical Biology and Medicine, 2018, 128, S128.	2.9	0
85	A new mouse model of poorly differentiated thyroid carcinoma and its implications for human disease. Gland Surgery, 2020, 9, 481-484.	1.1	0
86	High frequency of FGFR1 mutations in patients with congenital hypogonadotropic hypogonadism and split hand/foot malformation. Endocrine Abstracts, 0, , .	0.0	0
87	Unilateral Graves' disease with papillary carcinoma of the hyperfunctioning lobe. Endocrine Abstracts, 0, , .	0.0	0
88	Transcriptomic response of mouse thyroid to iodine by upregulating Nrf2-dependent and independent pathways. Endocrine Abstracts, 0, , .	0.0	0
89	Constitutive activation of Nrf2 antioxidant pathway leads to age-dependent goiter and compensated hypothyroidism in mice. Endocrine Abstracts, 0, , .	0.0	0
90	SAT-455 Mouse Thyroid Responds to Iodine Overload by Transcriptionally Enhancing the Keap1/Nrf2 Antioxidant Response and by Upregulating Nrf2-Dependent and Independent Inflammatory and Fibrosis Pathways. Journal of the Endocrine Society, 2020, 4, .	0.2	0

#	Article	IF	CITATIONS
91	OR28-01 Constitutive Activation of NRF2 Antioxidant Response Leads to Age-Dependent Goiter and Compensated Hypothyroidism in Male Mice. Journal of the Endocrine Society, 2020, 4, .	0.2	0