Jordi Cirera

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6972051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper Active Sites in Biology. Chemical Reviews, 2014, 114, 3659-3853.	23.0	1,305
2	Shape maps and polyhedral interconversion paths in transition metal chemistry. Coordination Chemistry Reviews, 2005, 249, 1693-1708.	9.5	889
3	Minimal Distortion Pathways in Polyhedral Rearrangements. Journal of the American Chemical Society, 2004, 126, 1755-1763.	6.6	362
4	Can large magnetic anisotropy and high spin really coexist?. Chemical Communications, 2008, , 52-54.	2.2	215
5	Mapping the Stereochemistry and Symmetry of Tetracoordinate Transition-Metal Complexes. Chemistry - A European Journal, 2004, 10, 190-207.	1.7	175
6	MIL-101(Fe) as a lithium-ion battery electrode material: a relaxation and intercalation mechanism during lithium insertion. Journal of Materials Chemistry A, 2015, 3, 4738-4744.	5.2	168
7	Spin density distribution in transition metal complexes. Coordination Chemistry Reviews, 2005, 249, 2649-2660.	9.5	163
8	How to Build Molecules with Large Magnetic Anisotropy. Chemistry - A European Journal, 2009, 15, 4078-4087.	1.7	163
9	Shape and Spin State in Four-Coordinate Transition-Metal Complexes: The Case of the d6 Configuration. Chemistry - A European Journal, 2006, 12, 3162-3167.	1.7	153
10	Accurate Computed Enthalpies of Spin Crossover in Iron and Cobalt Complexes. Journal of Physical Chemistry A, 2009, 113, 10033-10039.	1.1	138
11	Continuous Shape Measures as a Stereochemical Tool in Organometallic Chemistry. Organometallics, 2005, 24, 1556-1562.	1.1	125
12	Benchmarking Density Functional Methods for Calculation of State Energies of First Row Spin-Crossover Molecules. Inorganic Chemistry, 2018, 57, 14097-14105.	1.9	124
13	Theoretical Prediction of Spin-Crossover Temperatures in Ligand-Driven Light-Induced Spin Change Systems. Inorganic Chemistry, 2012, 51, 8194-8201.	1.9	93
14	Stereochemistry and Spin State in Four-Coordinate Transition Metal Compounds. Inorganic Chemistry, 2008, 47, 2871-2889.	1.9	88
15	Classical molecular interaction potentials: Improved setup procedure in molecular dynamics simulations of proteins. Proteins: Structure, Function and Bioinformatics, 2001, 45, 428-437.	1.5	87
16	Ferromagnetic Coupling in Trinuclear, Partial Cubane Cu ^{II} Complexes with a μ ₃ â€OH Core: Magnetostructural Correlations. Chemistry - A European Journal, 2007, 13, 9297-9309.	1.7	69
17	Computational assessment on the Tolman cone angles for P-ligands. Dalton Transactions, 2019, 48, 15036-15048.	1.6	62
18	Exchange coupling in CullGdIII dinuclear complexes: A theoretical perspective. Comptes Rendus Chimie, 2008, 11, 1227-1234.	0.2	61

Jordi Cirera

#	Article	IF	CITATIONS
19	How High the Spin? Allowed and Forbidden Spin States in Transition-Metal Chemistry. Angewandte Chemie - International Edition, 2006, 45, 3012-3020.	7.2	53
20	The effects of electronic polarization on water adsorption in metal-organic frameworks: H2O in MIL-53(Cr). Journal of Chemical Physics, 2012, 137, 054704.	1.2	45
21	Quantitative Geometric Descriptions of the Belt Iron Atoms of the Ironâ Molybdenum Cofactor of Nitrogenase and Synthetic Iron(II) Model Complexes. Inorganic Chemistry, 2007, 46, 60-71.	1.9	44
22	Molecular Mechanisms of Spin Crossover in the {Fe(pz)[Pt(CN) ₄]} Metal–Organic Framework upon Water Adsorption. Journal of the American Chemical Society, 2016, 138, 6123-6126.	6.6	41
23	Chemically crosslinked isoreticular metal–organic frameworks. Chemical Communications, 2013, 49, 3200.	2.2	40
24	An Unprecedented Stimuli ontrolled Singleâ€Crystal Reversible Phase Transition of a Metal–Organic Framework and Its Application to a Novel Method of Guest Encapsulation. Advanced Materials, 2018, 30, e1800726.	11.1	39
25	Theoretical Modeling of Spin Crossover in Metal–Organic Frameworks: [Fe(pz) ₂ Pt(CN) ₄] as a Case Study. Inorganic Chemistry, 2014, 53, 11020-11028.	1.9	38
26	Theoretical modeling of two-step spin-crossover transitions in Fe ^{II} dinuclear systems. Journal of Materials Chemistry C, 2015, 3, 7954-7961.	2.7	36
27	Structure of the Reduced Copper Active Site in Preprocessed Galactose Oxidase: Ligand Tuning for One-Electron O ₂ Activation in Cofactor Biogenesis. Journal of the American Chemical Society, 2016, 138, 13219-13229.	6.6	35
28	Spectroscopic and Electronic Structure Studies of Phenolate Cu(II) Complexes: Phenolate Ring Orientation and Activation Related to Cofactor Biogenesis. Journal of the American Chemical Society, 2008, 130, 16262-16273.	6.6	33
29	Thermal spin crossover in Fe(<scp>ii</scp>) and Fe(<scp>iii</scp>). Accurate spin state energetics at the solid state. Physical Chemistry Chemical Physics, 2020, 22, 4938-4945.	1.3	32
30	Guest effect on spin-crossover frameworks. Reviews in Inorganic Chemistry, 2014, 34, 199-216.	1.8	31
31	Mercurophilic interactions: a theoretical study on the importance of ligands. Physical Chemistry Chemical Physics, 2017, 19, 11645-11654.	1.3	31
32	Electronic Control of Spin-Crossover Properties in Four-Coordinate Bis(formazanate) Iron(II) Complexes. Journal of the American Chemical Society, 2020, 142, 20170-20181.	6.6	27
33	Theoretical Modeling of the Ligand-Tuning Effect over the Transition Temperature in Four-Coordinated Fe ^{II} Molecules. Inorganic Chemistry, 2016, 55, 1657-1663.	1.9	26
34	Computational Modeling of Transition Temperatures in Spin-Crossover Systems. Comments on Inorganic Chemistry, 2019, 39, 216-241.	3.0	23
35	Solvation-Guided Design of Fluorescent Probes for Discrimination of Amyloids. Scientific Reports, 2018, 8, 6950.	1.6	21
36	Electronic and Steric Control of the Spin-Crossover Behavior in [(Cp ^R) ₂ Mn] Manganocenes. Inorganic Chemistry, 2018, 57, 702-709.	1.9	20

Jordi Cirera

#	Article	IF	CITATIONS
37	Microwave assisted synthesis of heterometallic 3d–4f M ₄ Ln complexes. Dalton Transactions, 2019, 48, 12440-12450.	1.6	19
38	Assessment of the SCAN Functional for Spin-State Energies in Spin-Crossover Systems. Journal of Physical Chemistry A, 2020, 124, 5053-5058.	1.1	18
39	Piano-Stool Ruthenium(II) Complexes with Delayed Cytotoxic Activity: Origin of the Lag Time. Inorganic Chemistry, 2021, 60, 7974-7990.	1.9	16
40	Electronic Structure Modulation in an Exceptionally Stable Nonâ€Heme Nitrosyl Iron(II) Spinâ€Crossover Complex. Chemistry - A European Journal, 2016, 22, 12741-12751.	1.7	15
41	Spin rossover Properties of an Iron(II) Coordination Nanohoop. Angewandte Chemie - International Edition, 2021, 60, 3515-3518.	7.2	14
42	Stereospinomers of pentacoordinate iron porphyrin complexes: the case of the [Fe(porphyrinato)(CN)]â~ anions. Dalton Transactions, 2013, 42, 7002.	1.6	12
43	Non-Switching 1,2-Dithienylethene-based Diplatinum(II) Complex Showing High Cytotoxicity. Inorganic Chemistry, 2016, 55, 5356-5364.	1.9	10
44	Ferromagnetism in polynuclear systems based on non-linear [MnII2Mn ^{III}] building blocks. Inorganic Chemistry Frontiers, 2016, 3, 1272-1279.	3.0	8
45	Accurate calculation of spin-state energy gaps in Fe(iii) spin-crossover systems using density functional methods. Dalton Transactions, 2021, 50, 17635-17642.	1.6	7
46	Controlling the spin-crossover behavior of the [Cr(indenyl) ₂] family <i>via</i> ligand functionalization. Dalton Transactions, 2021, 50, 8704-8710.	1.6	5
47	Spin State and Stereochemistry. , 2013, , 441-468.		2
48	Coordination control of a semicarbazide Schiff base ligand for spontaneous aggregation of a Ni ₂ Ln ₂ cubane family: influence of ligand arms and carboxylate bridges on the organization of the magnetic core. New Journal of Chemistry, 2020, 44, 4812-4821.	1.4	2
49	[Co/Fe(α-Alkyl-tpdt)2]xâ^': Alkyl-Substituted Cobalt and Iron Bis-dithiolenethiophenic Complexes. Inorganic Chemistry, 2020, 59, 9261-9269.	1.9	0
50	Spinâ€Crossover Properties of an Iron(II) Coordination Nanohoop. Angewandte Chemie, 2021, 133, 3557-3560.	1.6	0
51	Spin state and stereochemistry in tetracoordinate complexes of dntransition metals. Acta Crystallographica Section A: Foundations and Advances, 2005, 61, c304-c304.	0.3	0
52	Combined use of structural databases, density functional calculations and continuous shape measures: application to four-coordinate transition metal compounds. Acta Crystallographica Section A: Foundations and Advances, 2007, 63, s72-s72.	0.3	0