
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6971676/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Membrane phospholipid composition of Pseudomonas aeruginosa grown in a cystic fibrosis mucus-mimicking medium. Biochimica Et Biophysica Acta - Biomembranes, 2021, 1863, 183482.	2.6	14
2	Antibody-Conjugated Nanocarriers for Targeted Antibiotic Delivery: Application in the Treatment of Bacterial Biofilms. Biomacromolecules, 2021, 22, 1639-1653.	5.4	25
3	Phosphorylation of Extracellular Proteins in Acinetobacter baumannii in Sessile Mode of Growth. Frontiers in Microbiology, 2021, 12, 738780.	3.5	3
4	Modification of poly(dimethyl siloxane) surfaces with an antibacterial claramine-derivative through click-chemistry grafting. Reactive and Functional Polymers, 2021, , 105102.	4.1	2
5	Application of Polymeric Nanocarriers for Enhancing the Bioavailability of Antibiotics at the Target Site and Overcoming Antimicrobial Resistance. Applied Sciences (Switzerland), 2021, 11, 10695.	2.5	16
6	MacAB-TolC Contributes to the Development of Acinetobacter baumannii Biofilm at the Solid–Liquid Interface. Frontiers in Microbiology, 2021, 12, 785161.	3.5	8
7	Chronic wound healing: A specific antibiofilm protein-asymmetric release system. Materials Science and Engineering C, 2020, 106, 110130.	7.3	15
8	Membrane Proteocomplexome of Campylobacter jejuni Using 2-D Blue Native/SDS-PAGE Combined to Bioinformatics Analysis. Frontiers in Microbiology, 2020, 11, 530906.	3.5	2
9	BioFluxâ"¢ 200 Microfluidic System to Study A. baumannii Biofilm Formation in a Dynamic Mode of Growth. Methods in Molecular Biology, 2019, 1946, 167-176.	0.9	8
10	Determination of the collision cross sections of cardiolipins and phospholipids from Pseudomonas aeruginosa by traveling wave ion mobility spectrometry-mass spectrometry using a novel correction strategy. Analytical and Bioanalytical Chemistry, 2019, 411, 8123-8131.	3.7	8
11	Anti-persister activity of squalamine against Acinetobacter baumannii. International Journal of Antimicrobial Agents, 2019, 53, 337-342.	2.5	19
12	Identification by mass spectrometry of glucosaminylphosphatidylglycerol, a phosphatidylglycerol derivative, produced by <i>Pseudomonas aeruginosa</i> . Rapid Communications in Mass Spectrometry, 2018, 32, 2113-2121.	1.5	8
13	Lysine Succinylation and Acetylation in <i>Pseudomonas aeruginosa</i> . Journal of Proteome Research, 2018, 17, 2449-2459.	3.7	81
14	Unsaturated Fatty Acids Affect Quorum Sensing Communication System and Inhibit Motility and Biofilm Formation of Acinetobacter baumannii. International Journal of Molecular Sciences, 2018, 19, 214.	4.1	58
15	Chemical modification of xanthan in the ordered and disordered states: An open route for tuning the physico-chemical properties. Carbohydrate Polymers, 2017, 178, 115-122.	10.2	18
16	Carboxymethylpullulan Grafted with Aminoguaiacol: Synthesis, Characterization, and Assessment of Antibacterial and Antioxidant Properties. Biomacromolecules, 2017, 18, 3238-3251.	5.4	15
17	Global Dynamic Proteome Study of a Pellicle-forming Acinetobacter baumannii Strain. Molecular and Cellular Proteomics, 2017, 16, 100-112.	3.8	48
18	The outer membrane porin OmpW of <i>Acinetobacter baumannii</i> is involved in iron uptake and colistin binding. FEBS Letters, 2016, 590, 224-231.	2.8	54

#	Article	IF	CITATIONS
19	Proteomic characterization of Nα- and Nε-acetylation in Acinetobacter baumannii. Journal of Proteomics, 2016, 144, 148-158.	2.4	34
20	Design of an anti-adhesive surface by a pilicide strategy. Colloids and Surfaces B: Biointerfaces, 2016, 146, 895-901.	5.0	7
21	Pseudomonas aeruginosa produces phosphatidyltris(hydroxymethyl)aminomethane and derivatives when grown in Tris-buffered medium. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 703-714.	2.4	1
22	Colistin-Resistant Acinetobacter baumannii Clinical Strains with Deficient Biofilm Formation. Antimicrobial Agents and Chemotherapy, 2016, 60, 1892-1895.	3.2	38
23	Unraveling the effects of static magnetic field stress on cytosolic proteins of Salmonella by using a proteomic approach. Canadian Journal of Microbiology, 2016, 62, 338-348.	1.7	5
24	Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance and Biofilm Formation in Acinetobacter baumannii. MBio, 2015, 6, .	4.1	165
25	Characterization of new outer membrane proteins of Pseudomonas aeruginosa using a combinatorial peptide ligand library. Analytical and Bioanalytical Chemistry, 2015, 407, 1513-1518.	3.7	7
26	Charge and aggregation pattern govern the interaction of plasticins with LPS monolayers mimicking the external leaflet of the outer membrane of Gram-negative bacteria. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 2967-2979.	2.6	16
27	Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiology, 2014, 14, 62.	3.3	66
28	Growth Retardation, Reduced Invasiveness, and Impaired Colistin-Mediated Cell Death Associated with Colistin Resistance Development in Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2014, 58, 828-832.	3.2	94
29	Characterisation of Pellicles Formed by Acinetobacter baumannii at the Air-Liquid Interface. PLoS ONE, 2014, 9, e111660.	2.5	75
30	Deciphering the Function of the Outer Membrane Protein OprD Homologue of Acinetobacter baumannii. Antimicrobial Agents and Chemotherapy, 2012, 56, 3826-3832.	3.2	57
31	Enhanced Adhesion of Campylobacter jejuni to Abiotic Surfaces Is Mediated by Membrane Proteins in Oxygen-Enriched Conditions. PLoS ONE, 2012, 7, e46402.	2.5	60
32	Adaptation of Salmonella enterica Hadar under static magnetic field: effects on outer membrane protein pattern. Proteome Science, 2012, 10, 6.	1.7	15
33	Growth of Acinetobacter baumannii in Pellicle Enhanced the Expression of Potential Virulence Factors. PLoS ONE, 2011, 6, e26030.	2.5	80
34	Membrane proteomes of Pseudomonas aeruginosa and Acinetobacter baumannii. Pathologie Et Biologie, 2011, 59, e136-e139.	2.2	5
35	Biofilm formation at the solid-liquid and air-liquid interfaces by Acinetobacter species. BMC Research Notes, 2011, 4, 5.	1.4	84
36	Structure–function relationships of CarO, the carbapenem resistance-associated outer membrane protein of Acinetobacter baumannii. Journal of Antimicrobial Chemotherapy, 2011, 66, 2053-2056.	3.0	78

#	Article	IF	CITATIONS
37	Comparison between the biofilm initiation of <i>Campylobacter jejuni</i> and <i>Campylobacter coli</i> strains to an inert surface using BioFilm Ring Test ^î . Journal of Applied Microbiology, 2010, 108, 1303-1312.	3.1	57
38	Incorporation of a Hydrophobic Antibacterial Peptide into Amphiphilic Polyelectrolyte Multilayers: A Bioinspired Approach to Prepare Biocidal Thin Coatings. Advanced Functional Materials, 2008, 18, 758-765.	14.9	118
39	Stabilization of membranes upon interaction of amphipathic polymers with membrane proteins. Protein Science, 2008, 13, 3056-3058.	7.6	10
40	Influence of the passenger domain of a model autotransporter on the properties of its translocator domain. Molecular Membrane Biology, 2008, 25, 192-202.	2.0	15
41	Chromosomal His-tagging: An alternative approach to membrane protein purification. Proteomics, 2007, 7, 399-402.	2.2	3
42	Global Comparison of the Membrane Subproteomes between a Multidrug-Resistant <i>Acinetobacter baumannii</i> Strain and a Reference Strain. Journal of Proteome Research, 2006, 5, 3385-3398.	3.7	80
43	Functional characterization of Pseudomonas fluorescens OprE and OprQ membrane proteins. Biochemical and Biophysical Research Communications, 2006, 346, 1048-1052.	2.1	14
44	Proteomic comparison of outer membrane protein patterns of sessile and planktonic Pseudomonas aeruginosa cells. Biofilms, 2005, 2, 27-36.	0.6	23
45	Channel Formation by CarO, the Carbapenem Resistance-Associated Outer Membrane Protein of <i>Acinetobacter baumannii</i> . Antimicrobial Agents and Chemotherapy, 2005, 49, 4876-4883.	3.2	111
46	Immobilization Induces Alterations in the Outer Membrane Protein Pattern ofYersiniaruckeri. Journal of Proteome Research, 2005, 4, 1988-1998.	3.7	18
47	Pore Size Dependence on Growth Temperature Is a Common Characteristic of the Major Outer Membrane Protein OprF in Psychrotrophic and Mesophilic Pseudomonas Species. Applied and Environmental Microbiology, 2004, 70, 6665-6669.	3.1	37
48	Enterobacter aerogenesOmpX, a cation-selective channelmar- and osmo-regulated. FEBS Letters, 2004, 569, 27-30.	2.8	59
49	Functional refolding of the Campylobacter jejuni MOMP (major outer membrane protein) porin by GroEL from the same species. Biochemical Journal, 2004, 378, 851-856.	3.7	16
50	Amphiphilic biopolymers (amphibiopols) as new surfactants for membrane protein solubilization. Protein Science, 2003, 12, 681-689.	7.6	30
51	Alteration of pore properties of Escherichia coli OmpF induced by mutation of key residues in anti-loop 3 region. Biochemical Journal, 2002, 363, 521.	3.7	53
52	Isolation and characterisation of the major outer membrane protein of Erwinia carotovora. Biochimica Et Biophysica Acta - Biomembranes, 2001, 1515, 12-22.	2.6	6
53	A new mechanism of antibiotic resistance in Enterobacteriaceae induced by a structural modification of the major porin. Molecular Microbiology, 2001, 41, 189-198.	2.5	134
54	Conformation and ion channel properties of a five-helix bundle protein. Journal of Peptide Science, 2001, 7, 41-49.	1.4	7

#	Article	IF	CITATIONS
55	Purification, characterization and sequence analysis of Omp50,a new porin isolated from Campylobacter jejuni. Biochemical Journal, 2000, 352, 637.	3.7	12
56	Ion channel formation by N-terminal domain: a common feature of OprFs ofPseudomonasand OmpA ofEscherichia coli. FEMS Microbiology Letters, 2000, 190, 261-265.	1.8	38
57	Evidence for association of lipopolysaccharide with Pseudomonas fluorescens strain MF0 porin OprF. Research in Microbiology, 2000, 151, 873-876.	2.1	15
58	Involvement of the C-terminal part of Pseudomonas fluorescens OprF in the modulation of its pore-forming properties. Biochimica Et Biophysica Acta - Biomembranes, 2000, 1509, 237-244.	2.6	10
59	MOMP (major outer membrane protein) ofCampylobacter jejuni; a versatile pore-forming protein. FEBS Letters, 2000, 469, 93-97.	2.8	53
60	Ion channel formation by N-terminal domain: a common feature of OprFs of Pseudomonas and OmpA of Escherichia coli. FEMS Microbiology Letters, 2000, 190, 261-265.	1.8	3
61	Purification, characterization and sequence analysis of Omp50,a new porin isolated from Campylobacter jejuni. Biochemical Journal, 2000, 352, 637-643.	3.7	32
62	Isolation, amino acid sequence and functional assays of SGTx1. The first toxin purified from the venom of the spider Scodra griseipes. FEBS Journal, 1999, 265, 572-579.	0.2	37
63	Synthesis and characterization of a new biotinylated gramicidin. , 1998, 4, 371-377.		15
64	Ionic channels formed by a primary amphipathic peptide containing a signal peptide and a nuclear localization sequence. Biochimica Et Biophysica Acta - Biomembranes, 1998, 1375, 52-60.	2.6	25
65	Growth temperature dependence of channel size of the major outer-membrane protein (OprF) in psychrotrophic Pseudomonas fluorescens strains. Microbiology (United Kingdom), 1997, 143, 1029-1035.	1.8	31
66	Ionophore properties of OmpA of Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 1993, 1145, 119-123.	2.6	66
67	Antibody Conjugated Nanocarriers for Targeted Antibiotic Delivery: Application in the Treatment of Bacterial Biofilm Infections. SSRN Electronic Journal, 0, , .	0.4	0