Milan Gryndler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6971652/publications.pdf

Version: 2024-02-01

		257450	330143
59	1,562	24	37
papers	citations	h-index	g-index
59	59	59	1672
37	37	37	1072
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Detection of biofilm and planktonic microbial communities in litter/soil mixtures. Applied Soil Ecology, 2022, 179, 104589.	4.3	1
2	Study of the effects of mineral salts on the biofilm formation on polypropylene fibers using three quantification methods. Folia Microbiologica, 2021, 66, 133-143.	2.3	0
3	Plant invasion alters community structure and decreases diversity of arbuscular mycorrhizal fungal communities. Applied Soil Ecology, 2021, 167, 104039.	4.3	22
4	Biofilm and planktonic microbial communities in highly acidic soil (pH < 3) in the Soos National Nature Reserve, Czech Republic. Extremophiles, 2020, 24, 577-591.	2.3	6
5	Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza, 2020, 30, 63-77.	2.8	17
6	Observations on two microbial life strategies in soil: Planktonic and biofilm-forming microorganisms are separable. Soil Biology and Biochemistry, 2019, 136, 107535.	8.8	16
7	Geography and habitat predominate over climate influences on arbuscular mycorrhizal fungal communities of mid-European meadows. Mycorrhiza, 2019, 29, 567-579.	2.8	18
8	Disentangling the factors of contrasting silver and copper accumulation in sporocarps of the ectomycorrhizal fungus Amanita strobiliformis from two sites. Science of the Total Environment, 2019, 694, 133679.	8.0	9
9	Fungi, a neglected component of acidophilic biofilms: do they have a potential for biotechnology?. Extremophiles, 2019, 23, 267-275.	2.3	17
10	Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 Panicum grasses. Plant and Soil, 2018, 425, 441-456.	3.7	34
11	Utilization of organic nitrogen by arbuscular mycorrhizal fungi—is there a specific role for protists and ammonia oxidizers?. Mycorrhiza, 2018, 28, 269-283.	2.8	82
12	Soil-derived organic particles and their effects on the community of culturable microorganisms. Folia Microbiologica, 2018, 63, 69-72.	2.3	0
13	Soil Matrix Determines the Outcome of Interaction Between Mycorrhizal Symbiosis and Biochar for Andropogon gerardii Growth and Nutrition. Frontiers in Microbiology, 2018, 9, 2862.	3.5	16
14	Utilization of organic nitrogen by arbuscular mycorrhizal fungiâ€"is there a specific role for protists and ammonia oxidizers?. Mycorrhiza, 2018, 28, 465-465.	2.8	22
15	Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza, 2018, 28, 435-450.	2.8	30
16	Truffle biogeographyâ€"A case study revealing ecological niche separation of different <i>Tuber</i> species. Ecology and Evolution, 2017, 7, 4275-4288.	1.9	13
17	Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses—A case of dysfunctional symbiosis. Pedobiologia, 2017, 62, 48-55.	1.2	12
18	Soil receptivity for ectomycorrhizal fungi: Tuber aestivum is specifically stimulated by calcium carbonate and certain organic compounds, but not mycorrhizospheric bacteria. Applied Soil Ecology, 2017, 117-118, 38-45.	4.3	5

#	Article	IF	CITATIONS
19	Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. Mycorrhiza, 2017, 27, 35-51.	2.8	30
20	Resurrection of Cortinarius coalescens: taxonomy, chemistry, and ecology. Mycological Progress, 2017, 16, 927-939.	1.4	7
21	Organic Nitrogen-Driven Stimulation of Arbuscular Mycorrhizal Fungal Hyphae Correlates with Abundance of Ammonia Oxidizers. Frontiers in Microbiology, 2016, 7, 711.	3.5	42
22	Molecular community analysis of arbuscular mycorrhizal fungiâ€"Contributions of PCR primer and host plant selectivity to the detected community profiles. Pedobiologia, 2016, 59, 179-187.	1.2	27
23	True Truffle Host Diversity. Soil Biology, 2016, , 267-281.	0.8	9
24	Bioaccumulation of heavy metals, metalloids, and chlorine in ectomycorrhizae from smelter-polluted area. Environmental Pollution, 2016, 218, 176-185.	7.5	35
25	Can inoculation with living soil standardize microbial communities in soilless potting substrates?. Applied Soil Ecology, 2016, 108, 278-287.	4.3	5
26	Mutabilis in mutabili: Spatiotemporal dynamics of a truffle colony in soil. Soil Biology and Biochemistry, 2015, 90, 62-70.	8.8	11
27	Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Frontiers in Plant Science, 2015, 6, 65.	3.6	46
28	Genetic transformation of extremophilic fungi Acidea extrema and Acidothrix acidophila. Folia Microbiologica, 2015, 60, 365-371.	2.3	5
29	Intracellular sequestration of zinc, cadmium and silver in Hebeloma mesophaeum and characterization of its metallothionein genes. Fungal Genetics and Biology, 2014, 67, 3-14.	2.1	62
30	On the possible role of macrofungi in the biogeochemical fate of uranium in polluted forest soils. Journal of Hazardous Materials, 2014, 280, 79-88.	12.4	25
31	Tuber aestivum association with non-host roots. Mycorrhiza, 2014, 24, 603-610.	2.8	45
32	Lead isotopic signatures of saprotrophic macrofungi of various origins: Tracing for lead sources and possible applications in geomycology. Applied Geochemistry, 2014, 43, 114-120.	3.0	23
33	A quest for indigenous truffle helper prokaryotes. Environmental Microbiology Reports, 2013, 5, 346-352.	2.4	47
34	Tuber aestivum Vittad. mycelium quantified: advantages and limitations of a qPCR approach. Mycorrhiza, 2013, 23, 341-348.	2.8	43
35	Mycorrhizal hyphae as ecological niche for highly specialized hypersymbionts – or just soil free-riders?. Frontiers in Plant Science, 2013, 4, 134.	3.6	112
36	Silver release from decomposed hyperaccumulating Amanita solitaria fruit-body biomass strongly affects soil microbial community. BioMetals, 2012, 25, 987-993.	4.1	13

#	Article	IF	Citations
37	Truffle brûIé: an efficient fungal life strategy. FEMS Microbiology Ecology, 2012, 80, 1-8.	2.7	68
38	Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza, 2012, 22, 69-80.	2.8	48
39	Haloorganics in Temperate Forest Ecosystems: Sources, Transport and Degradation. Plant Ecophysiology, 2011, , 17-45.	1.5	0
40	Interaction of arbuscular mycorrhizal fungi and rhizobia: Effects on flax yield in spoilâ€bank clay. Journal of Plant Nutrition and Soil Science, 2011, 174, 128-134.	1.9	24
41	The potential of mycorrhizal inoculation and organic amendment to increase yields of <i>Galega orientalis</i> and <i>Helianthus tuberosus</i> in a spoilâ€bank substrate. Journal of Plant Nutrition and Soil Science, 2011, 174, 664-672.	1.9	19
42	Three metallothionein isoforms and sequestration of intracellular silver in the hyperaccumulator <i>Amanita strobiliformis</i> . New Phytologist, 2011, 190, 916-926.	7.3	53
43	Detection of summer truffle (Tuber aestivum Vittad.) in ectomycorrhizae and in soil using specific primers. FEMS Microbiology Letters, 2011, 318, 84-91.	1.8	41
44	Terminal restriction fragment length polymorphism analysis of soil microbial communities reveals interaction of fungi and chlorine bound in organic matter. Folia Microbiologica, 2011, 56, 477-481.	2.3	0
45	Molecular phylogeny of Psilocybe cyanescens complex in Europe, with reference to the position of the secotioid Weraroa novae-zelandiae. Mycological Progress, 2011, 10, 149-155.	1.4	30
46	Molecular detection of Entoloma spp. associated with roots of rosaceous woody plants. Mycological Progress, 2010, 9, 27-36.	1.4	7
47	Biotic Environment of the Arbuscular Mycorrhizal Fungi in Soil. , 2010, , 209-236.		12
48	<i>Tuber aestivum</i> - hypogeous fungus neglected in the Czech Republic. A review Czech Mycology, 2010, 61, 163-173.	0.5	16
49	Influence of soil organic matter decomposition on arbuscular mycorrhizal fungi in terms of asymbiotic hyphal growth and root colonization. Mycorrhiza, 2009, 19, 255-266.	2.8	79
50	The formation and fate of chlorinated organic substances in temperate and boreal forest soils. Environmental Science and Pollution Research, 2009, 16, 127-143.	5.3	42
51	Cultivation of high-biomass crops on coal mine spoil banks: Can microbial inoculation compensate for high doses of organic matter?. Bioresource Technology, 2008, 99, 6391-6399.	9.6	47
52	Chloride concentration affects soil microbial community. Chemosphere, 2008, 71, 1401-1408.	8.2	20
53	Cultivation of flax in spoil-bank clay: Mycorrhizal inoculationvs.high organic amendments. Journal of Plant Nutrition and Soil Science, 2008, 171, 872-877.	1.9	13
54	Determination of trichloroacetic acid in environmental studies using carbon 14 and chlorine 36. Chemosphere, 2006, 63, 1924-1932.	8.2	16

#	Article	IF	CITATIONS
55	Natural Formation and Degradation of Chloroacetic Acids and Volatile Organochlorines in Forest Soil. Challenges to understanding (12 pp). Environmental Science and Pollution Research, 2005, 12, 233-244.	5.3	46
56	Saprobic microfungi under Lolium perenne and Trifolium repens at different fertilization intensities and elevated atmospheric CO2 concentration. Global Change Biology, 2005, 11, 224-230.	9.5	15
57	Locally accumulated extractable compounds in mycorrhizal parts of maize roots suppress the growth of Hyphae of Glomus intraradices. Folia Geobotanica, 2003, 38, 125-138.	0.9	4
58	Chitin stimulates development and sporulation of arbuscular mycorrhizal fungi. Applied Soil Ecology, 2003, 22, 283-287.	4.3	37
59	In vitro proliferation of Glomus fistulosum intraradical hyphae from mycorrhizal root segments of maize. Mycological Research, 1998, 102, 1067-1073.	2.5	18