Keizo Kanasaki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6971364/publications.pdf

Version: 2024-02-01

98 papers

4,801 citations

39 h-index 102432 66 g-index

99 all docs 99 docs citations 99 times ranked 5809 citing authors

#	Article	IF	CITATIONS
1	Safety and tolerability of linagliptin in Asians with type 2 diabetes: a pooled analysis of 4457 patients from 21 randomized, double-blind, placebo-controlled clinical trials. Expert Opinion on Drug Safety, 2022, 21, 425-434.	1.0	2
2	Adenosine/A1R signaling pathway did not play dominant roles on the influence of SGLT2 inhibitor in the kidney of BSAâ€overloaded STZâ€induced diabetic mice. Journal of Diabetes Investigation, 2022, , .	1.1	1
3	Analysis of eGFR index category and annual eGFR slope association with adverse clinical outcomes using real-world Japanese data: a retrospective database study. BMJ Open, 2022, 12, e052246.	0.8	2
4	Editorial: Receptor Biology and Cell Signaling in Diabetes. Frontiers in Pharmacology, 2022, 13, 864117.	1.6	2
5	Effect of linagliptin, a dipeptidyl peptidase-4 inhibitor, compared with the sulfonylurea glimepiride on cardiovascular outcomes in Asians with type 2 diabetes: subgroup analysis of the randomized CAROLINA® trial. Diabetology International, 2021, 12, 87-100.	0.7	12
6	Metformin Mitigates DPP-4 Inhibitor-Induced Breast Cancer Metastasis via Suppression of mTOR Signaling. Molecular Cancer Research, 2021, 19, 61-73.	1.5	22
7	The PKM2 activator TEPPâ€46 suppresses kidney fibrosis via inhibition of the EMT program and aberrant glycolysis associated with suppression of HIFâ€Îα accumulation. Journal of Diabetes Investigation, 2021, 12, 697-709.	1.1	44
8	STOX1 deficiency is associated with renin-mediated gestational hypertension and placental defects. JCI Insight, 2021, 6, .	2.3	4
9	Classical molecule in diabetic kidney hypertrophy is linked to defects in selfâ€eating through fineâ€tuning. Journal of Diabetes Investigation, 2021, 12, 686-688.	1.1	0
10	The impact of micronutrient deficiency on pregnancy complications and development origin of health and disease. Journal of Obstetrics and Gynaecology Research, 2021, 47, 1965-1972.	0.6	9
11	Loss of endothelial glucocorticoid receptor accelerates diabetic nephropathy. Nature Communications, 2021, 12, 2368.	5 . 8	79
12	CD26/DPP-4: Type 2 Diabetes Drug Target with Potential Influence on Cancer Biology. Cancers, 2021, 13, 2191.	1.7	20
13	Endothelial SIRT3 regulates myofibroblast metabolic shifts in diabetic kidneys. IScience, 2021, 24, 102390.	1.9	50
14	Interactions among Long Non-Coding RNAs and microRNAs Influence Disease Phenotype in Diabetes and Diabetic Kidney Disease. International Journal of Molecular Sciences, 2021, 22, 6027.	1.8	19
15	Editorial: Combating Diabetes and Diabetic Kidney Disease. Frontiers in Pharmacology, 2021, 12, 716029.	1.6	4
16	Dietary Magnesium Insufficiency Induces Salt-Sensitive Hypertension in Mice Associated With Reduced Kidney Catechol-O-Methyl Transferase Activity. Hypertension, 2021, 78, 138-150.	1.3	4
17	Osteomalacia caused by atypical renal tubular acidosis with vitamin D deficiency: a case report. CEN Case Reports, 2021, 10, 294-300.	0.5	O
18	Thyroid crisis caused by metastatic thyroid cancer: an autopsy case report. BMC Endocrine Disorders, 2021, 21, 213.	0.9	3

#	Article	IF	CITATIONS
19	Sodium–glucose cotransporter-2 inhibitors for diabetic kidney disease: Targeting Warburg effects in proximal tubular cells. Diabetes and Metabolism, 2020, 46, 353-361.	1.4	16
20	Loss of Mitochondrial Control Impacts Renal Health. Frontiers in Pharmacology, 2020, 11, 543973.	1.6	25
21	Endothelial FGFR1 (Fibroblast Growth Factor Receptor 1) Deficiency Contributes Differential Fibrogenic Effects in Kidney and Heart of Diabetic Mice. Hypertension, 2020, 76, 1935-1944.	1.3	55
22	Metabolic reprogramming by <i>N</i> à€acetylâ€serylâ€aspartylâ€lysylâ€proline protects against diabetic kidney disease. British Journal of Pharmacology, 2020, 177, 3691-3711.	2.7	42
23	CDâ€1 <i>^{db/db}</i> mice: A novel type 2 diabetic mouse model with progressive kidney fibrosis. Journal of Diabetes Investigation, 2020, 11, 1470-1481.	1.1	5
24	<i>N</i> â€acetylâ€serylâ€aspartylâ€lysylâ€proline is a valuable endogenous antifibrotic peptide for kidney fibrosis in diabetes: An update and translational aspects. Journal of Diabetes Investigation, 2020, 11, 516-526.	1.1	13
25	Inhibition of Angiotensin-Converting Enzyme Ameliorates Renal Fibrosis by Mitigating DPP-4 Level and Restoring Antifibrotic MicroRNAs. Genes, 2020, 11, 211.	1.0	54
26	Endothelial autophagy deficiency induces IL6 - dependent endothelial mesenchymal transition and organ fibrosis. Autophagy, 2020, 16, 1905-1914.	4.3	65
27	Deficiency in Dipeptidyl Peptidase-4 Promotes Chemoresistance Through the CXCL12/CXCR4/mTOR/TGFÎ ² Signaling Pathway in Breast Cancer Cells. International Journal of Molecular Sciences, 2020, 21, 805.	1.8	18
28	Renal protective effects of empagliflozin via inhibition of EMT and aberrant glycolysis in proximal tubules. JCI Insight, 2020, 5, .	2.3	131
29	Effect of switching to teneligliptin from other dipeptidyl peptidaseâ€4 inhibitors on glucose control and renoprotection in typeA2 diabetes patients with diabetic kidney disease. Journal of Diabetes Investigation, 2019, 10, 706-713.	1.1	7
30	microRNA Crosstalk Influences Epithelial-to-Mesenchymal, Endothelial-to-Mesenchymal, and Macrophage-to-Mesenchymal Transitions in the Kidney. Frontiers in Pharmacology, 2019, 10, 904.	1.6	84
31	Relevance of Autophagy Induction by Gastrointestinal Hormones: Focus on the Incretin-Based Drug Target and Glucagon. Frontiers in Pharmacology, 2019, 10, 476.	1.6	11
32	Dipeptidyl peptidase-4 plays a pathogenic role in BSA-induced kidney injury in diabetic mice. Scientific Reports, 2019, 9, 7519.	1.6	25
33	βklotho is essential for the antiâ€endothelial mesenchymal transition effects of <i>N</i> â€acetylâ€serylâ€aspartylâ€lysylâ€proline. FEBS Open Bio, 2019, 9, 1029-1038.	1.0	7
34	N-Acetyl-seryl-aspartyl-lysyl-proline is a potential biomarker of renal function in normoalbuminuric diabetic patients with eGFR ≥ 30Âml/min/1.73Âm2. Clinical and Experimental Nephrology, 2019, 23,	1834-101	2 ⁵ .
35	Inhibition of Dipeptidyl Peptidase-4 Accelerates Epithelial–Mesenchymal Transition and Breast Cancer Metastasis via the CXCL12/CXCR4/mTOR Axis. Cancer Research, 2019, 79, 735-746.	0.4	86
36	The role of renal dipeptidyl peptidase-4 in kidney disease: renal effects of dipeptidyl peptidase-4 inhibitors with a focus on linagliptin. Clinical Science, 2018, 132, 489-507.	1.8	75

#	Article	IF	Citations
37	Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a highâ€fat diet. Journal of Diabetes Investigation, 2018, 9, 1025-1032.	1.1	88
38	FGFR1 is essential for N-acetyl-seryl-aspartyl-lysyl-proline regulation of mitochondrial dynamics by upregulating microRNA let-7b-5p. Biochemical and Biophysical Research Communications, 2018, 495, 2214-2220.	1.0	13
39	Severe electrolytes disorders with the interstitial kidney alterations in the patient with the history of total thyroidectomy and parathyroidectomy: possible role of vitamin D deficiency. Clinical Case Reports (discontinued), 2018, 6, 983-989.	0.2	0
40	Glucose Intolerance and Insulin Resistance: Relevance in Preeclampsia. Comprehensive Gynecology and Obstetrics, 2018, , 85-98.	0.0	2
41	A ketogenic amino acid rich diet benefits mitochondrial homeostasis by altering the AKT/4EBP1 and autophagy signaling pathways in the gastrocnemius and soleus. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 1547-1555.	1.1	17
42	Loss of placental growth factor ameliorates maternal hypertension and preeclampsia in mice. Journal of Clinical Investigation, 2018, 128, 5008-5017.	3.9	42
43	SIRT3 deficiency leads to induction of abnormal glycolysis in diabetic kidney with fibrosis. Cell Death and Disease, 2018, 9, 997.	2.7	117
44	AMP-Activated Protein (AMPK) in Pathophysiology of Pregnancy Complications. International Journal of Molecular Sciences, 2018, 19, 3076.	1.8	26
45	A low-protein diet exerts a beneficial effect on diabetic status and prevents diabetic nephropathy in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Nutrition and Metabolism, 2018, 15, 20.	1.3	23
46	Renal mitochondrial oxidative stress is enhanced by the reduction of Sirt3 activity, in Zucker diabetic fatty rats. Redox Report, 2018, 23, 153-159.	1.4	42
47	Catechol-O-Methyltransferase Deficiency Leads to Hypersensitivity of the Pressor Response Against Angiotensin II. Hypertension, 2017, 69, 1156-1164.	1.3	28
48	Linagliptin and its effects on hyperglycaemia and albuminuria in patients with type 2 diabetes and renal dysfunction: the randomized ⟨scp⟩ MARLINA⟨/scp⟩â€ <scp⟩t2d⟨ 1610-1619.<="" 19,="" 2017,="" and="" diabetes,="" metabolism,="" obesity="" scp⟩="" td="" trial.=""><td>2.2</td><td>119</td></scp⟩t2d⟨>	2.2	119
49	Deficiency in catechol-o-methyltransferase is linked to a disruption of glucose homeostasis in mice. Scientific Reports, 2017, 7, 7927.	1.6	30
50	Anagliptin ameliorates albuminuria and urinary liver-type fatty acid-binding protein excretion in patients with type 2 diabetes with nephropathy in a glucose-lowering-independent manner. BMJ Open Diabetes Research and Care, 2017, 5, e000391.	1.2	7
51	Dipeptidyl peptidase-4 inhibition and renoprotection. Current Opinion in Nephrology and Hypertension, 2017, 26, 56-66.	1.0	16
52	Cyclic and intermittent very lowâ€protein diet can have beneficial effects against advanced diabetic nephropathy in Wistar fatty (<i>fa/fa</i>) rats, an animal model of type 2 diabetes and obesity. Nephrology, 2017, 22, 1030-1034.	0.7	5
53	FGFR1 is critical for the anti-endothelial mesenchymal transition effect of N-acetyl-seryl-aspartyl-lysyl-proline via induction of the MAP4K4 pathway. Cell Death and Disease, 2017, 8, e2965-e2965.	2.7	61
54	The Effect of Piceatannol from Passion Fruit (Passiflora edulis) Seeds on Metabolic Health in Humans. Nutrients, 2017, 9, 1142.	1.7	38

#	Article	IF	Citations
55	Oral Administration of N-Acetyl-seryl-aspartyl-lysyl-proline Ameliorates Kidney Disease in Both Type 1 and Type 2 Diabetic Mice via a Therapeutic Regimen. BioMed Research International, 2016, 2016, 1-11.	0.9	36
56	Effect of Antifibrotic MicroRNAs Crosstalk on the Action of N-acetyl-seryl-aspartyl-lysyl-proline in Diabetes-related Kidney Fibrosis. Scientific Reports, 2016, 6, 29884.	1.6	60
57	A very-low-protein diet ameliorates advanced diabetic nephropathy through autophagy induction by suppression of the mTORC1 pathway in Wistar fatty rats, an animal model of type 2 diabetes and obesity. Diabetologia, 2016, 59, 1307-1317.	2.9	7 5
58	Concerted efforts to combat diabetic complications. Kidney International, 2016, 89, 269-271.	2.6	0
59	The pathological significance of dipeptidyl peptidase-4 in endothelial cell homeostasis and kidney fibrosis. Diabetology International, 2016, 7, 212-220.	0.7	7
60	Dipeptidyl peptidase-4 and kidney fibrosis in diabetes. Fibrogenesis and Tissue Repair, 2016, 9, 1.	3.4	50
61	Linagliptin but not Sitagliptin inhibited transforming growth factor- \hat{l}^2 2-induced endothelial DPP-4 activity and the endothelial-mesenchymal transition. Biochemical and Biophysical Research Communications, 2016, 471, 184-190.	1.0	38
62	The Relevance of the Renin-Angiotensin System in the Development of Drugs to Combat Preeclampsia. International Journal of Endocrinology, 2015, 2015, 1-12.	0.6	21
63	Anti-albuminuric effects of spironolactone in patients with type 2 diabetic nephropathy: a multicenter, randomized clinical trial. Clinical and Experimental Nephrology, 2015, 19, 1098-1106.	0.7	49
64	Interactions of DPP-4 and integrin \hat{l}^21 influences endothelial-to-mesenchymal transition. Kidney International, 2015, 88, 479-489.	2.6	127
65	The biological significance of angiotensin-converting enzyme inhibition to combat kidney fibrosis. Clinical and Experimental Nephrology, 2015, 19, 65-74.	0.7	11
66	Combating Kidney Fibrosis. BioMed Research International, 2014, 2014, 1-2.	0.9	2
67	N-acetyl-seryl-aspartyl-lysyl-proline: a valuable endogenous anti-fibrotic peptide for combating kidney fibrosis in diabetes. Frontiers in Pharmacology, 2014, 5, 70.	1.6	26
68	Lipid mediators in diabetic nephropathy. Fibrogenesis and Tissue Repair, 2014, 7, 12.	3.4	54
69	Combat Diabetic Nephropathy: From Pathogenesis to Treatment. Journal of Diabetes Research, 2014, 2014, 1-2.	1.0	11
70	The Role of Ubiquitination and Sumoylation in Diabetic Nephropathy. BioMed Research International, 2014, 2014, 1-11.	0.9	51
71	N-acetyl-seryl-aspartyl-lysyl-proline Inhibits Diabetes-Associated Kidney Fibrosis and Endothelial-Mesenchymal Transition. BioMed Research International, 2014, 2014, 1-12.	0.9	7 3
72	Clinical therapeutic strategies for early stage of diabetic kidney disease. World Journal of Diabetes, 2014, 5, 342.	1.3	42

#	Article	IF	CITATIONS
73	Cancer biology in diabetes. Journal of Diabetes Investigation, 2014, 5, 251-264.	1.1	25
74	Linagliptin-Mediated DPP-4 Inhibition Ameliorates Kidney Fibrosis in Streptozotocin-Induced Diabetic Mice by Inhibiting Endothelial-to-Mesenchymal Transition in a Therapeutic Regimen. Diabetes, 2014, 63, 2120-2131.	0.3	298
75	Three ileus cases associated with the use of dipeptidyl peptidaseâ€4 inhibitors in diabetic patients. Journal of Diabetes Investigation, 2013, 4, 673-675.	1.1	8
76	Ketogenic essential amino acids replacement diet ameliorated hepatosteatosis with altering autophagy-associated molecules. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2013, 1832, 1605-1612.	1.8	28
77	Role of the endothelial-to-mesenchymal transition in renal fibrosis of chronic kidney disease. Clinical and Experimental Nephrology, 2013, 17, 488-497.	0.7	145
78	Sirtuins and renal diseases: relationship with aging and diabetic nephropathy. Clinical Science, 2013, 124, 153-164.	1.8	182
79	Loss of $\hat{l}^21\hat{a}$ -integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype. FASEB Journal, 2013, 27, 1950-1961.	0.2	37
80	MicroRNAs in Kidney Fibrosis and Diabetic Nephropathy: Roles on EMT and EndMT. BioMed Research International, 2013, 2013, 1-10.	0.9	104
81	The biological consequence of obesity on the kidney. Nephrology Dialysis Transplantation, 2013, 28, iv1-iv7.	0.4	33
82	Matrix metalloproteinase-9 deficiency phenocopies features of preeclampsia and intrauterine growth restriction. Proceedings of the National Academy of Sciences of the United States of America, 2013, 11109-11114.	3.3	142
83	Diabetic nephropathy: the role of inflammation in fibroblast activation and kidney fibrosis. Frontiers in Endocrinology, 2013, 4, 7.	1.5	186
84	Angiogenic defects in preeclampsia: What is known, and how are such defects relevant to preeclampsia pathogenesis?. Hypertension Research in Pregnancy, 2013, 1, 57-65.	0.1	1
85	Diabetic angiopathy and angiogenic defects. Fibrogenesis and Tissue Repair, 2012, 5, 13.	3.4	43
86	Pathophysiology of the aging kidney and therapeutic interventions. Hypertension Research, 2012, 35, 1121-1128.	1.5	41
87	Conditional deletion of β1â€integrin from urothelium results in bladder dysfunction and abnormal voiding. FASEB Journal, 2012, 26, .	0.2	0
88	Elevation of the antifibrotic peptide N-acetyl-seryl-aspartyl-lysyl-proline: a blood pressure-independent beneficial effect of angiotensin l-converting enzyme inhibitors. Fibrogenesis and Tissue Repair, 2011, 4, 25.	3.4	23
89	Biology of Obesity: Lessons from Animal Models of Obesity. Journal of Biomedicine and Biotechnology, 2011, 2011, 1-11.	3.0	126
90	Preeclampsia. American Journal of Pathology, 2010, 176, 710-720.	1.9	79

#	Article	IF	CITATIONS
91	Pre-eclampsia: connecting angiogenic and metabolic pathways. Trends in Endocrinology and Metabolism, 2010, 21, 529-536.	3.1	73
92	The biology of preeclampsia. Kidney International, 2009, 76, 831-837.	2.6	135
93	Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature, 2008, 453, 1117-1121.	13.7	348
94	Integrin \hat{l}^21 -mediated matrix assembly and signaling are critical for the normal development and function of the kidney glomerulus. Developmental Biology, 2008, 313, 584-593.	0.9	115
95	N-Acetyl-seryl-aspartyl-lysyl-proline inhibits DNA synthesis in human mesangial cells via up-regulation of cell cycle modulators. Biochemical and Biophysical Research Communications, 2006, 342, 758-765.	1.0	20
96	N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Ameliorates the Progression of Renal Dysfunction and Fibrosis in WKY Rats with Established Anti–Glomerular Basement Membrane Nephritis. Journal of the American Society of Nephrology: JASN, 2006, 17, 674-685.	3.0	55
97	N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Prevents Renal Insufficiency and Mesangial Matrix Expansion in Diabetic db/db Mice. Diabetes, 2005, 54, 838-845.	0.3	66
98	N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Inhibits TGF-β–Mediated Plasminogen Activator Inhibitor-1 Expression via Inhibition of Smad Pathway in Human Mesangial Cells. Journal of the American Society of Nephrology: JASN, 2003, 14, 863-872.	3.0	80