Ding-Xiang Yan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6971256/publications.pdf Version: 2024-02-01

		22132	29127
122	11,264	59	104
papers	citations	h-index	g-index
122	122	122	7886
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Structured Reduced Graphene Oxide/Polymer Composites for Ultraâ€Efficient Electromagnetic Interference Shielding. Advanced Functional Materials, 2015, 25, 559-566.	7.8	1,007
2	Conductive polymer composites with segregated structures. Progress in Polymer Science, 2014, 39, 1908-1933.	11.8	617
3	Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology, 2011, 22, 055705.	1.3	578
4	Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. Journal of Materials Chemistry, 2012, 22, 18772.	6.7	516
5	Cellulose composite aerogel for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry A, 2015, 3, 4983-4991.	5.2	269
6	Highly Efficient and Reliable Transparent Electromagnetic Interference Shielding Film. ACS Applied Materials & Interfaces, 2018, 10, 11941-11949.	4.0	245
7	Electrically conductive and electromagnetic interference shielding of polyethylene composites with devisable carbon nanotube networks. Journal of Materials Chemistry C, 2015, 3, 9369-9378.	2.7	227
8	Lightweight and Robust Carbon Nanotube/Polyimide Foam for Efficient and Heat-Resistant Electromagnetic Interference Shielding and Microwave Absorption. ACS Applied Materials & Interfaces, 2020, 12, 8704-8712.	4.0	227
9	Simultaneously improved electromagnetic interference shielding andÂmechanical performance of segregated carbon nanotube/polypropylene composite via solid phase molding. Composites Science and Technology, 2018, 156, 87-94.	3.8	221
10	Synergistic effect of graphene nanosheets and carbonyl iron–nickel alloy hybrid filler on electromagnetic interference shielding and thermal conductivity of cyanate ester composites. Journal of Materials Chemistry C, 2018, 6, 1476-1486.	2.7	212
11	Gradient Structure Design of Flexible Waterborne Polyurethane Conductive Films for Ultraefficient Electromagnetic Shielding with Low Reflection Characteristic. ACS Applied Materials & Interfaces, 2018, 10, 19143-19152.	4.0	212
12	Asymmetric conductive polymer composite foam for absorption dominated ultra-efficient electromagnetic interference shielding with extremely low reflection characteristics. Journal of Materials Chemistry A, 2020, 8, 9146-9159.	5.2	196
13	Stretchable and durable conductive fabric for ultrahigh performance electromagnetic interference shielding. Carbon, 2019, 144, 101-108.	5.4	186
14	Facile preparation of 3D regenerated cellulose/graphene oxide composite aerogel with high-efficiency adsorption towards methylene blue. Journal of Colloid and Interface Science, 2018, 532, 58-67.	5.0	180
15	Multilayer WPU conductive composites with controllable electro-magnetic gradient for absorption-dominated electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105692.	3.8	177
16	High Strain Tolerant EMI Shielding Using Carbon Nanotube Network Stabilized Rubber Composite. Advanced Materials Technologies, 2017, 2, 1700078.	3.0	153
17	Flexible and efficient electromagnetic interference shielding materials from ground tire rubber. Carbon, 2017, 121, 267-273.	5.4	150
18	Selective electromagnetic interference shielding performance and superior mechanical strength of conductive polymer composites with oriented segregated conductive networks. Chemical Engineering Journal, 2019, 373, 556-564.	6.6	147

#	Article	IF	CITATIONS
19	Tunable electromagnetic interference shielding effectiveness via multilayer assembly of regenerated cellulose as a supporting substrate and carbon nanotubes/polymer as a functional layer. Journal of Materials Chemistry C, 2017, 5, 3130-3138.	2.7	137
20	A high heat-resistance bioplastic foam with efficient electromagnetic interference shielding. Chemical Engineering Journal, 2017, 323, 29-36.	6.6	136
21	Robustly Superhydrophobic Conductive Textile for Efficient Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2019, 11, 1680-1688.	4.0	136
22	Enhanced mechanical and thermal properties of rigid polyurethane foam composites containing graphene nanosheets and carbon nanotubes. Polymer International, 2012, 61, 1107-1114.	1.6	132
23	Super-tough conducting carbon nanotube/ultrahigh-molecular-weight polyethylene composites with segregated and double-percolated structure. Journal of Materials Chemistry, 2012, 22, 23568.	6.7	123
24	Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of <i>in situ </i> thermally reduced graphene oxide. Nanotechnology, 2014, 25, 145705.	1.3	123
25	Formation of a Segregated Electrically Conductive Network Structure in a Low-Melt-Viscosity Polymer for Highly Efficient Electromagnetic Interference Shielding. ACS Sustainable Chemistry and Engineering, 2016, 4, 4137-4145.	3.2	123
26	Highly Sensitive and Stretchable Polyurethane Fiber Strain Sensors with Embedded Silver Nanowires. ACS Applied Materials & Interfaces, 2019, 11, 23649-23658.	4.0	122
27	Ultralight carbon nanotube/graphene/polyimide foam with heterogeneous interfaces for efficient electromagnetic interference shielding and electromagnetic wave absorption. Carbon, 2021, 176, 118-125.	5.4	122
28	Highly Stretchable and Sensitive Strain Sensor with Porous Segregated Conductive Network. ACS Applied Materials & Interfaces, 2019, 11, 37094-37102.	4.0	116
29	The effect of electric field, annealing temperature and filler loading on the percolation threshold of polystyrene containing carbon nanotubes and graphene nanosheets. Carbon, 2011, 49, 1980-1988.	5.4	114
30	A strong and tough polymer–carbon nanotube film for flexible and efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2017, 5, 8944-8951.	2.7	112
31	Large-scale preparation of segregated PLA/carbon nanotube composite with high efficient electromagnetic interference shielding and favourable mechanical properties. Composites Part B: Engineering, 2018, 155, 405-413.	5.9	110
32	Highly thermally conductive liquid metal-based composites with superior thermostability for thermal management. Journal of Materials Chemistry C, 2021, 9, 2904-2911.	2.7	110
33	Ultralight Cellulose Porous Composites with Manipulated Porous Structure and Carbon Nanotube Distribution for Promising Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2018, 10, 40156-40167.	4.0	108
34	A Highly Sensitive and Broad-Range Pressure Sensor Based on Polyurethane Mesodome Arrays Embedded with Silver Nanowires. ACS Applied Materials & Interfaces, 2020, 12, 19988-19999.	4.0	108
35	Super-Robust Polylactide Barrier Films by Building Densely Oriented Lamellae Incorporated with Ductile in Situ Nanofibrils of Poly(butylene adipate- <i>co</i> -terephthalate). ACS Applied Materials & Interfaces, 2016, 8, 8096-8109	4.0	102
36	Structuring Hierarchically Porous Architecture in Biomass-Derived Carbon Aerogels for Simultaneously Achieving High Electromagnetic Interference Shielding Effectiveness and High Absorption Coefficient. ACS Applied Materials & Interfaces, 2020, 12, 18840-18849.	4.0	102

#	Article	IF	CITATIONS
37	Highly Conductive and Machineâ€Washable Textiles for Efficient Electromagnetic Interference Shielding. Advanced Materials Technologies, 2019, 4, 1800503.	3.0	101
38	Self-healing and flexible carbon nanotube/polyurethane composite for efficient electromagnetic interference shielding. Composites Part B: Engineering, 2020, 193, 108015.	5.9	100
39	Lightweight and highly efficient electromagnetic wave-absorbing of 3D CNTs/GNS@CoFe2O4 ternary composite aerogels. Journal of Alloys and Compounds, 2018, 768, 6-14.	2.8	98
40	Low-temperature carbonized carbon nanotube/cellulose aerogel for efficient microwave absorption. Composites Part B: Engineering, 2021, 220, 108985.	5.9	95
41	Constructing highly oriented segregated structure towards high-strength carbon nanotube/ultrahigh-molecular-weight polyethylene composites for electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2018, 110, 237-245.	3.8	93
42	Flexible and conductive polyurethane composites for electromagnetic shielding and printable circuit. Chemical Engineering Journal, 2019, 360, 1427-1436.	6.6	91
43	Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption. Journal of Colloid and Interface Science, 2018, 530, 113-119.	5.0	86
44	Water-based conductive ink for highly efficient electromagnetic interference shielding coating. Chemical Engineering Journal, 2020, 384, 123368.	6.6	86
45	Stretchable Liquid Metal-Based Conductive Textile for Electromagnetic Interference Shielding. ACS Applied Materials & Interfaces, 2020, 12, 53230-53238.	4.0	85
46	Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Composites Science and Technology, 2019, 181, 107695.	3.8	83
47	Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites. Journal of Materials Chemistry A, 2014, 2, 10048-10058.	5.2	82
48	Large-scale fabrication and electrical properties of an anisotropic conductive polymer composite utilizing preferable location of carbon nanotubes in a polymer blend. Composites Science and Technology, 2010, 70, 1973-1979.	3.8	80
49	Self-assembled reduced graphene oxide/nickel nanofibers with hierarchical core-shell structure for enhanced electromagnetic wave absorption. Carbon, 2020, 167, 530-540.	5.4	80
50	Synergistic Effect of Graphite and Carbon Nanotubes on Improved Electromagnetic Interference Shielding Performance in Segregated Composites. Industrial & Engineering Chemistry Research, 2018, 57, 11929-11938.	1.8	78
51	Electrical conductivity and major mechanical and thermal properties of carbon nanotubeâ€filled polyurethane foams. Journal of Applied Polymer Science, 2011, 120, 3014-3019.	1.3	77
52	Structuring dense three-dimensional sheet-like skeleton networks in biomass-derived carbon aerogels for efficient electromagnetic interference shielding. Carbon, 2019, 152, 316-324.	5.4	76
53	Double-segregated carbon nanotube–polymer conductive composites as candidates for liquid sensing materials. Journal of Materials Chemistry A, 2013, 1, 4177.	5.2	75
54	Largely enhanced mechanical property of segregated carbon nanotube/poly(vinylidene fluoride) composites with high electromagnetic interference shielding performance. Composites Science and Technology, 2018, 167, 260-267.	3.8	74

#	Article	IF	CITATIONS
55	Flexible and highly conductive sandwich nylon/nickel film for ultra-efficient electromagnetic interference shielding. Applied Surface Science, 2018, 455, 856-863.	3.1	66
56	Wearable Polyethylene/Polyamide Composite Fabric for Passive Human Body Cooling. ACS Applied Materials & Interfaces, 2018, 10, 41637-41644.	4.0	65
57	3D-printing of segregated carbon nanotube/polylactic acid composite with enhanced electromagnetic interference shielding and mechanical performance. Materials and Design, 2021, 197, 109222.	3.3	63
58	A Unique Double Percolated Polymer Composite for Highly Efficient Electromagnetic Interference Shielding. Macromolecular Materials and Engineering, 2016, 301, 1232-1241.	1.7	62
59	Novel passive cooling composite textile for both outdoor and indoor personal thermal management. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105738.	3.8	62
60	Injection molding of segregated carbon nanotube/polypropylene composite with enhanced electromagnetic interference shielding and mechanical performance. Composites Science and Technology, 2020, 197, 108253.	3.8	62
61	A Healable and Mechanically Enhanced Composite with Segregated Conductive Network Structure for High-Efficient Electromagnetic Interference Shielding. Nano-Micro Letters, 2021, 13, 162.	14.4	62
62	Improved properties of highly oriented graphene/polymer nanocomposites. Journal of Applied Polymer Science, 2011, 121, 3167-3174.	1.3	61
63	A highly efficient and heat-resistant electromagnetic interference shielding carbon nanotube/poly(phenylene sulfide) composite <i>via</i> sinter molding. Journal of Materials Chemistry C, 2018, 6, 10760-10766.	2.7	57
64	Integrated strength and toughness in graphene/calcium alginate films for highly efficient electromagnetic interference shielding. Journal of Materials Chemistry C, 2018, 6, 9166-9174.	2.7	54
65	Injection Molded Segregated Carbon Nanotube/Polypropylene Composite for Efficient Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2018, 57, 12378-12385.	1.8	53
66	Facile, green and affordable strategy for structuring natural graphite/polymer composite with efficient electromagnetic interference shielding. RSC Advances, 2015, 5, 22587-22592.	1.7	52
67	Ultrahigh gas barrier poly (vinyl alcohol) nanocomposite film filled with congregated and oriented Fe 3 O 4 @CO sheets induced by magnetic-field. Composites Part A: Applied Science and Manufacturing, 2017, 97, 1-9.	3.8	48
68	A wearable multifunctional fabric with excellent electromagnetic interference shielding and passive radiation heating performance. Composites Part B: Engineering, 2021, 225, 109299.	5.9	44
69	Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding. Chemical Engineering Journal, 2021, 426, 131288.	6.6	44
70	Characterization and performance of dodecyl amine functionalized graphene oxide and dodecyl amine functionalized graphene/highâ€density polyethylene nanocomposites: A comparative study. Journal of Applied Polymer Science, 2014, 131, .	1.3	43
71	Ultra-low gas permeable cellulose nanoï¬ber nanocomposite ï¬lms ï¬lled with highly oriented graphene oxide nanosheets induced by shear field. Carbohydrate Polymers, 2019, 209, 310-319. 	5.1	43
72	Highly thermally conductive and mechanically robust composite of linear ultrahigh molecular weight polyethylene and boron nitride via constructing nacre-like structure. Composites Science and Technology, 2019, 184, 107858.	3.8	42

#	Article	IF	CITATIONS
73	Healable polyurethane/carbon nanotube composite with segregated structure for efficient electromagnetic interference shielding. Composites Science and Technology, 2020, 200, 108446.	3.8	41
74	An electrically conductive polymer composite with a co-continuous segregated structure for enhanced mechanical performance. Journal of Materials Chemistry C, 2020, 8, 11546-11554.	2.7	40
75	CNT-assisted design of stable liquid metal droplets for flexible multifunctional composites. Composites Part B: Engineering, 2022, 239, 109961.	5.9	40
76	Highly crystallized poly (lactic acid) under high pressure. AIP Advances, 2012, 2, .	0.6	38
77	Ultrahigh molecular weight polyethylene composites with segregated nickel conductive network for highly efficient electromagnetic interference shielding. Materials Letters, 2017, 209, 353-356.	1.3	38
78	Flexible Poly(vinylidene fluoride)-MXene/Silver Nanowire Electromagnetic Shielding Films with Joule Heating Performance. Industrial & Engineering Chemistry Research, 2021, 60, 9824-9832.	1.8	38
79	Highly enhanced microwave absorption for carbon nanotube/barium ferrite composite with ultra-low carbon nanotube loading. Journal of Materials Science and Technology, 2022, 102, 115-122.	5.6	37
80	Preparation and properties of carbon black/polymer composites with segregated and double-percolated network structures. Journal of Materials Science, 2013, 48, 4892-4898.	1.7	36
81	Steric stabilizer-based promotion of uniform polyaniline shell for enhanced electromagnetic wave absorption of carbon nanotube/polyaniline hybrids. Composites Part B: Engineering, 2020, 199, 108309.	5.9	36
82	Towards efficient electromagnetic interference shielding performance for polyethylene composites by structuring segregated carbon black/graphite networks. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1490-1499.	2.0	34
83	Ultrathin, flexible and sandwich-structured PHBV/silver nanowire films for high-efficiency electromagnetic interference shielding. Journal of Materials Chemistry C, 2021, 9, 3307-3315.	2.7	34
84	Efficient electromagnetic interference shielding of lightweight carbon nanotube/polyethylene composites <i>via</i> compression molding plus salt-leaching. RSC Advances, 2018, 8, 8849-8855.	1.7	33
85	Highly linear and low hysteresis porous strain sensor for wearable electronic skins. Composites Communications, 2021, 26, 100809.	3.3	33
86	Enhanced Mechanical Performance of Segregated Carbon Nanotube/Poly(lactic acid) Composite for Efficient Electromagnetic Interference Shielding. Industrial & Engineering Chemistry Research, 2019, 58, 4454-4461.	1.8	32
87	Highly Bendable and Durable Waterproof Paper for Ultra-High Electromagnetic Interference Shielding. Polymers, 2019, 11, 1486.	2.0	30
88	Temperature-Resistivity Behaviour of CNTs/UHMWPE Composites with a Two-Dimensional Conductive Network. Polymer-Plastics Technology and Engineering, 2009, 48, 478-481.	1.9	29
89	Flexible and heat-resistant carbon nanotube/graphene/polyimide foam for broadband microwave absorption. Composites Science and Technology, 2021, 212, 108848.	3.8	28
90	Carbonized cotton textile with hierarchical structure for superhydrophobicity and efficient electromagnetic interference shielding. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106555.	3.8	28

#	Article	IF	CITATIONS
91	Carbon aerogel microspheres with in-situ mineralized TiO2 for efficient microwave absorption. Nano Research, 2022, 15, 7723-7730.	5.8	28
92	Positive temperature coefficient and timeâ€dependent resistivity of carbon nanotubes (CNTs)/ultrahigh molecular weight polyethylene (UHMWPE) composite. Journal of Applied Polymer Science, 2009, 114, 1002-1010.	1.3	27
93	Highly stretchable and durable fibrous strain sensor with growth ring-like spiral structure for wearable electronics. Composites Part B: Engineering, 2021, 225, 109275.	5.9	27
94	Facile Construction of a Superhydrophobic Surface on a Textile with Excellent Electrical Conductivity and Stretchability. Industrial & Engineering Chemistry Research, 2020, 59, 7546-7553.	1.8	25
95	Polyaniline-decorated carbon fibers for enhanced mechanical and electromagnetic interference shielding performances of epoxy composites. Materials and Design, 2022, 217, 110658.	3.3	22
96	Percolation and resistivity-temperature behaviours of carbon nanotube-carbon black hybrid loaded ultrahigh molecular weight polyethylene composites with segregated structures. RSC Advances, 2015, 5, 61318-61323.	1.7	21
97	Baroplastics with Robust Mechanical Properties and Reserved Processability through Hydrogen-Bonded Interactions. ACS Applied Materials & Interfaces, 2019, 11, 12008-12016.	4.0	21
98	A facile strategy to fabricate microencapsulated expandable graphite as a flameâ€retardant for rigid polyurethane foams. Journal of Applied Polymer Science, 2015, 132, .	1.3	20
99	Effective electromagnetic interference shielding properties of micro-truss structured CNT/Epoxy composites fabricated based on visible light processing. Composites Science and Technology, 2022, 221, 109296.	3.8	20
100	Layer-Structured Design and Fabrication of Cyanate Ester Nanocomposites for Excellent Electromagnetic Shielding with Absorption-Dominated Characteristic. Polymers, 2018, 10, 933.	2.0	19
101	Repeatable, room-temperature-processed baroplastic-carbon nanotube composites for electromagnetic interference shielding. Journal of Materials Chemistry C, 2018, 6, 12955-12964.	2.7	17
102	Highly Thermally Conductive Fluorinated Graphene/Aramid Nanofiber Films with Superior Mechanical Properties and Thermostability. Industrial & Engineering Chemistry Research, 2021, 60, 8451-8459.	1.8	17
103	A reliable and highly conductive carbon nanotube/thermoplastic polyurethane composite with an enhanced segregated structure for electrically driven heater applications. Journal of Materials Chemistry C, 2020, 8, 8814-8822.	2.7	17
104	Facile fabrication of highly durable superhydrophobic strain sensors for subtle human motion detection. Journal of Materials Science and Technology, 2022, 110, 35-42.	5.6	17
105	Non-isothermal crystallization of ethylene-vinyl acetate copolymer containing a high weight fraction of graphene nanosheets and carbon nanotubes. Chinese Journal of Polymer Science (English Edition), 2012, 30, 879-892.	2.0	16
106	Tunable positive liquid coefficient of an anisotropically conductive carbon nanotube-polymer composite. Journal of Polymer Research, 2011, 18, 2239-2243.	1.2	13
107	Anisotropically conductive polypropylene/nickel coated glass fiber composite via magnetic field inducement. Journal of Materials Science: Materials in Electronics, 2017, 28, 9126-9131.	1.1	13
108	Octadecylamine-Grafted Graphene Oxide Helps the Dispersion of Carbon Nanotubes in Ethylene Vinyl Acetate. Polymers, 2017, 9, 397.	2.0	13

#	Article	IF	CITATIONS
109	Efficient electromagnetic interference shielding of flexible Ag microfiber sponge/polydimethylsiloxane composite constructed by blow spinning. Composites Science and Technology, 2022, 220, 109281.	3.8	13
110	Non-isothermal crystallization kinetics of alkyl-functionalized graphene oxide/high-density polyethylene nanocomposites. Composite Interfaces, 2014, 21, 203-215.	1.3	12
111	Synergetic Toughening Effect of Carbon Nanotubes and β-Nucleating Agents on the Polypropylene Random Copolymer/Styrene-Ethylene-Butylene- Styrene Block Copolymer Blends. Polymers, 2019, 11, 29.	2.0	11
112	Low-Voltage Actuator with Bilayer Structure for Various Biomimetic Locomotions. ACS Applied Materials & amp; Interfaces, 2021, 13, 43449-43457.	4.0	11
113	Influence of surface polarity of carbon nanotubes on electric field induced aligned conductive network formation in a polymer melt. RSC Advances, 2013, 3, 24185.	1.7	10
114	Temperature resistivity behaviour in carbon nanotube/ultrahigh molecular weight polyethylene composites with segregated and double percolated structure. Plastics, Rubber and Composites, 2013, 42, 59-65.	0.9	10
115	Ultraporous poly(lactic acid) scaffolds with improved mechanical performance using highâ€pressure molding and salt leaching. Journal of Applied Polymer Science, 2013, 130, 3509-3520.	1.3	9
116	Effects of dodecyl amine functionalized graphene oxide on the crystallization behavior of isotactic polypropylene. Journal of Applied Polymer Science, 2014, 131, .	1.3	8
117	Flexible andWater-proof nylon mesh with ultralow silver content for effective electromagnetic interference shielding effectiveness. Chemical Engineering Journal, 2022, 439, 135662.	6.6	8
118	Low-voltage and controllable-developed actuator with bilayer structure based on triple-shape actuation. Composites Science and Technology, 2022, 222, 109399.	3.8	7
119	A facile strategy to modulate the fluorescent properties of star polymers by varying the arm numbers. Journal of Polymer Research, 2012, 19, 1.	1.2	3
120	Resistivity Relaxation of Anisotropic Conductive Polymer Composites. Journal of Macromolecular Science - Physics, 2013, 52, 788-796.	0.4	3
121	A Conductive Carbon Nanotube-Polymer Composite Based on a Co-continuous Blend. Journal of Macromolecular Science - Physics, 2013, 52, 167-177.	0.4	2
122	Fabrication of multilayered carbon fibrous membranes for high-efficiency electromagnetic absorption. Journal of Applied Physics, 2021, 130, 175302.	1.1	0