Krasimir Danov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6971166/publications.pdf

Version: 2024-02-01

157 papers

6,827 citations

44069 48 h-index 72 g-index

157 all docs

157 docs citations

times ranked

157

4663 citing authors

#	Article	IF	CITATIONS
1	Thermodynamics of Ionic Surfactant Adsorption with Account for the Counterion Binding:Â Effect of Salts of Various Valency. Langmuir, 1999, 15, 2351-2365.	3.5	222
2	Interactions between particles with an undulated contact line at a fluid interface: Capillary multipoles of arbitrary order. Journal of Colloid and Interface Science, 2005, 287, 121-134.	9.4	173
3	Mixed Solutions of Anionic and Zwitterionic Surfactant (Betaine):Â Surface-Tension Isotherms, Adsorption, and Relaxation Kinetics. Langmuir, 2004, 20, 5445-5453.	3 . 5	148
4	Flocculation and coalescence of micron-size emulsion droplets. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 152, 161-182.	4.7	133
5	Experimental and theoretical investigations on interfacial temperature jumps during evaporation. Experimental Thermal and Fluid Science, 2007, 32, 276-292.	2.7	128
6	Capillary forces between particles at a liquid interface: General theoretical approach and interactions between capillary multipoles. Advances in Colloid and Interface Science, 2010, 154, 91-103.	14.7	128
7	Particles with an Undulated Contact Line at a Fluid Interface:Â Interaction between Capillary Quadrupoles and Rheology of Particulate Monolayers. Langmuir, 2001, 17, 7694-7705.	3. 5	126
8	Influence of the Surface Viscosity on the Hydrodynamic Resistance and Surface Diffusivity of a Large Brownian Particle. Journal of Colloid and Interface Science, 1995, 175, 36-45.	9.4	114
9	Super stable foams stabilized by colloidal ethyl cellulose particles. Soft Matter, 2012, 8, 2194-2205.	2.7	112
10	Determination of the aggregation number and charge of ionic surfactant micelles from the stepwise thinning of foam films. Advances in Colloid and Interface Science, 2012, 183-184, 55-67.	14.7	105
11	Electrodipping Force Acting on Solid Particles at a Fluid Interface. Langmuir, 2004, 20, 6139-6151.	3 . 5	98
12	Capillary mechanisms in membrane emulsification: oil-in-water emulsions stabilized by Tween 20 and milk proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 209, 83-104.	4.7	94
13	Remarkably high surface visco-elasticity of adsorption layers of triterpenoid saponins. Soft Matter, 2013, 9, 5738.	2.7	94
14	Effect of Surfactants on the Film Drainage. Journal of Colloid and Interface Science, 1999, 211, 291-303.	9.4	93
15	The formation of satellite droplets by unstable binary drop collisions. Physics of Fluids, 2001, 13, 2463-2477.	4.0	93
16	Comparison of the van der Waals and Frumkin Adsorption Isotherms for Sodium Dodecyl Sulfate at Various Salt Concentrations. Langmuir, 2002, 18, 9106-9109.	3.5	89
17	Interfacial rheology of adsorbed layers with surface reaction: On the origin of the dilatational surface viscosity. Advances in Colloid and Interface Science, 2005, 114-115, 61-92.	14.7	89
18	Falling ball viscosimetry of giant vesicle membranes: Finite-size effects. European Physical Journal B, 1999, 12, 589-598.	1.5	87

#	Article	IF	CITATIONS
19	Measurement of the Drag Coefficient of Spherical Particles Attached to Fluid Interfaces. Journal of Colloid and Interface Science, 1995, 172, 147-154.	9.4	83
20	Effect of Nonionic Admixtures on the Adsorption of Ionic Surfactants at Fluid Interfaces. 1. Sodium Dodecyl Sulfate and Dodecanol. Langmuir, 2003, 19, 5004-5018.	3.5	83
21	Viscous drag of a solid sphere straddling a spherical or flat surface. Physics of Fluids, 2000, 12, 2711.	4.0	80
22	Micelle–monomer equilibria in solutions of ionic surfactants and in ionic–nonionic mixtures: A generalized phase separation model. Advances in Colloid and Interface Science, 2014, 206, 17-45.	14.7	79
23	Stability of draining plane-parallel films containing surfactants. Advances in Colloid and Interface Science, 2002, 96, 101-129.	14.7	78
24	Unique Properties of Bubbles and Foam Films Stabilized by HFBII Hydrophobin. Langmuir, 2011, 27, 2382-2392.	3.5	78
25	Coalescence dynamics of deformable Brownian emulsion droplets. Langmuir, 1993, 9, 1731-1740.	3.5	76
26	Pair interaction energy between deformable drops and bubbles. Journal of Chemical Physics, 1993, 99, 7179-7189.	3.0	75
27	Evaluation of the Precision of Drop-Size Determination in Oil/Water Emulsions by Low-Resolution NMR Spectroscopy. Langmuir, 2004, 20, 11402-11413.	3.5	74
28	Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times. Journal of Colloid and Interface Science, 2012, 376, 296-306.	9.4	72
29	Growth of wormlike micelles in nonionic surfactant solutions: Quantitative theory vs. experiment. Advances in Colloid and Interface Science, 2018, 256, 1-22.	14.7	72
30	Precise Method for Measuring the Shear Surface Viscosity of Surfactant Monolayers. Langmuir, 1996, 12, 2650-2653.	3.5	71
31	Stability of evaporating two-layered liquid film in the presence of surfactant—l. The equations of lubrication approximation. Chemical Engineering Science, 1998, 53, 2809-2822.	3.8	71
32	The colloid structural forces as a tool for particle characterization and control of dispersion stability. Physical Chemistry Chemical Physics, 2007, 9, 5183.	2.8	71
33	Spontaneous detachment of oil drops from solid substrates: governing factors. Journal of Colloid and Interface Science, 2003, 257, 357-363.	9.4	70
34	Maximum Bubble Pressure Method:Â Universal Surface Age and Transport Mechanisms in Surfactant Solutions. Langmuir, 2006, 22, 7528-7542.	3.5	69
35	Detection of the Hydrophobic Surface Force in Foam Films by Measurements of the Critical Thickness of the Film Rupture. Langmuir, 2004, 20, 1799-1806.	3.5	68
36	Growth of Giant Rodlike Micelles of Ionic Surfactant in the Presence of Al3+ Counterions. Langmuir, 1998, 14, 4036-4049.	3.5	67

#	Article	IF	CITATIONS
37	Instrument and methods for surface dilatational rheology measurements. Review of Scientific Instruments, 2008, 79, 104102.	1.3	67
38	Surface properties of adsorption layers formed from triterpenoid and steroid saponins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 491, 18-28.	4.7	65
39	Flocculation of Deformable Emulsion Droplets. Journal of Colloid and Interface Science, 1995, 176, 189-200.	9.4	60
40	Sphere-to-Rod Transition in the Shape of Anionic Surfactant Micelles Determined by Surface Tension Measurements. Langmuir, 1997, 13, 5544-5551.	3.5	60
41	Solubility limits and phase diagrams for fatty acids in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions. Journal of Colloid and Interface Science, 2012, 369, 274-286.	9.4	57
42	The standard free energy of surfactant adsorption at air/water and oil/water interfaces: Theoretical vs. empirical approaches. Colloid Journal, 2012, 74, 172-185.	1.3	57
43	The role of the hydrophobic phase in the unique rheological properties of saponin adsorption layers. Soft Matter, 2014, 10, 7034-7044.	2.7	57
44	Effect of the Precipitation of Neutral-Soap, Acid-Soap, and Alkanoic Acid Crystallites on the Bulk pH and Surface Tension of Soap Solutions. Langmuir, 2007, 23, 3538-3553.	3.5	54
45	Oscillatory Structural Forces Due to Nonionic Surfactant Micelles: Data by Colloidalâ^'Probe AFM vs Theory. Langmuir, 2010, 26, 915-923.	3.5	54
46	Particleâ [^] Interface Interaction across a Nonpolar Medium in Relation to the Production of Particle-Stabilized Emulsions. Langmuir, 2006, 22, 106-115.	3.5	52
47	Capillary Forces between Colloidal Particles Confined in a Liquid Film:  The Finite-Meniscus Problem. Langmuir, 2001, 17, 6599-6609.	3.5	51
48	Detachment of Oil Drops from Solid Surfaces in Surfactant Solutions: Molecular Mechanisms at a Moving Contact Lineâ€. Industrial & Engineering Chemistry Research, 2005, 44, 1309-1321.	3.7	50
49	Electric forces induced by a charged colloid particle attached to the water–nonpolar fluid interface. Journal of Colloid and Interface Science, 2006, 298, 213-231.	9.4	49
50	The metastable states of foam films containing electrically charged micelles or particles: Experiment and quantitative interpretation. Advances in Colloid and Interface Science, 2011, 168, 50-70.	14.7	49
51	Stability of evaporating two-layered liquid film in the presence of surfactant—II. Linear analysis. Chemical Engineering Science, 1998, 53, 2823-2837.	3.8	48
52	Drag of a Solid Particle Trapped in a Thin Film or at an Interface: Influence of Surface Viscosity and Elasticity. Journal of Colloid and Interface Science, 2000, 226, 35-43.	9.4	48
53	Effect of surfactants on the stability of films between two colliding small bubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 175, 179-192.	4.7	47
54	On the Viscosity of Dilute Emulsions. Journal of Colloid and Interface Science, 2001, 235, 144-149.	9.4	47

#	Article	IF	CITATIONS
55	On the mechanism of stomatocyte–echinocyte transformations of red blood cells: experiment and theoretical model. Colloids and Surfaces B: Biointerfaces, 2004, 34, 123-140.	5.0	47
56	Role of the counterions on the adsorption of ionic surfactants. Advances in Colloid and Interface Science, 2007, 134-135, 105-124.	14.7	47
57	Self-Assembled Bilayers from the Protein HFBII Hydrophobin: Nature of the Adhesion Energy. Langmuir, 2011, 27, 4481-4488.	3.5	47
58	Kinetic Model for the Simultaneous Processes of Flocculation and Coalescence in Emulsion Systems. Journal of Colloid and Interface Science, 1994, 167, 8-17.	9.4	46
59	Stability of evaporating two-layered liquid film in the presence of surfactant—III. Non-linear stability analysis. Chemical Engineering Science, 1998, 53, 2839-2857.	3.8	46
60	Effect of electric-field-induced capillary attraction on the motion of particles at an oil–water interface. Physical Chemistry Chemical Physics, 2007, 9, 6371.	2.8	46
61	Determination of Bulk and Surface Diffusion Coefficients from Experimental Data for Thin Liquid Film Drainage. Journal of Colloid and Interface Science, 2000, 223, 314-316.	9.4	44
62	Experimental Study of Particle Structuring in Vertical Stratifying Films from Latex Suspensions. Langmuir, 1997, 13, 4342-4348.	3.5	43
63	Adsorption Kinetics of Ionic Surfactants with Detailed Account for the Electrostatic Interactions. Journal of Colloid and Interface Science, 1997, 192, 194-206.	9.4	43
64	The stability of evaporating thin liquid films in the presence of surfactant. I. Lubrication approximation and linear analysis. Physics of Fluids, 1998, 10, 131-143.	4.0	43
65	Surfactants role on the deformation of colliding small bubbles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 547-566.	4.7	42
66	Interpretation of surface-tension isotherms of n-alkanoic (fatty) acids by means of the van der Waals model. Journal of Colloid and Interface Science, 2006, 300, 809-813.	9.4	42
67	Attraction between Particles at a Liquid Interface Due to the Interplay of Gravity- and Electric-Field-Induced Interfacial Deformations. Langmuir, 2009, 25, 9129-9139.	3.5	42
68	Surface dilatational rheology measurements for oil/water systems with viscous oils. Journal of Colloid and Interface Science, 2009, 339, 545-550.	9.4	41
69	Mass transport in micellar surfactant solutions: 1. Relaxation of micelle concentration, aggregation number and polydispersity. Advances in Colloid and Interface Science, 2006, 119, 1-16.	14.7	40
70	Interaction between deformable Brownian droplets. Physical Review Letters, 1993, 71, 3226-3229.	7.8	39
71	Monolayers of charged particles in a Langmuir trough: Could particle aggregation increase the surface pressure?. Journal of Colloid and Interface Science, 2016, 462, 223-234.	9.4	39
72	Adsorption Relaxation for Nonionic Surfactants under Mixed Barrier-Diffusion and Micellization-Diffusion Control. Journal of Colloid and Interface Science, 2002, 251, 18-25.	9.4	38

#	Article	IF	CITATIONS
73	Capillary meniscus dynamometry – Method for determining the surface tension of drops and bubbles with isotropic and anisotropic surface stress distributions. Journal of Colloid and Interface Science, 2015, 440, 168-178.	9.4	37
74	Adsorption kinetics of ionic surfactants with detailed account for the electrostatic interactions: effect of the added electrolyte. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 389-411.	4.7	36
75	Shape of the Capillary Meniscus around an Electrically Charged Particle at a Fluid Interface:Â Comparison of Theory and Experiment. Langmuir, 2006, 22, 2653-2667.	3.5	36
76	Role of interfacial elasticity for the rheological properties of saponin-stabilized emulsions. Journal of Colloid and Interface Science, 2020, 564, 264-275.	9.4	36
77	Adsorption from Micellar Surfactant Solutions: Nonlinear Theory and Experiment. Journal of Colloid and Interface Science, 1996, 183, 223-235.	9.4	35
78	Hydrodynamic Theory for Spontaneously Growing Dimple in Emulsion Films with Surfactant Mass Transfer. Journal of Colloid and Interface Science, 1997, 188, 313-324.	9.4	35
79	Influence of Ionic Surfactants on the Drainage Velocity of Thin Liquid Films. Journal of Colloid and Interface Science, 2001, 241, 400-412.	9.4	35
80	Sulfonated methyl esters of fatty acids in aqueous solutions: Interfacial and micellar properties. Journal of Colloid and Interface Science, 2015, 457, 307-318.	9.4	35
81	Elastic Langmuir Layers and Membranes Subjected to Unidirectional Compression: Wrinkling and Collapse. Langmuir, 2010, 26, 143-155.	3.5	34
82	The Drop Size in Membrane Emulsification Determined from the Balance of Capillary and Hydrodynamic Forces. Langmuir, 2008, 24, 1397-1410.	3.5	33
83	Role of Surface Diffusion for the Drainage and Hydrodynamic Stability of Thin Liquid Films. Langmuir, 2001, 17, 1150-1156.	3.5	32
84	Mass transport in micellar surfactant solutions: 2. Theoretical modeling of adsorption at a quiescent interface. Advances in Colloid and Interface Science, 2006, 119, 17-33.	14.7	32
85	Surface Pressure and Elasticity of Hydrophobin HFBII Layers on the Air–Water Interface: Rheology Versus Structure Detected by AFM Imaging. Langmuir, 2013, 29, 6053-6067.	3.5	32
86	Soft electrostatic repulsion in particle monolayers at liquid interfaces: surface pressure and effect of aggregation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150130.	3.4	32
87	Interaction between like-charged particles at a liquid interface: Electrostatic repulsion vs. electrocapillary attraction. Journal of Colloid and Interface Science, 2010, 345, 505-514.	9.4	31
88	Equations of state and adsorption isotherms of low molecular non-ionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 118-133.	4.7	30
89	Surface Pressure Isotherm for a Monolayer of Charged Colloidal Particles at a Water/Nonpolar-Fluid Interface: Experiment and Theoretical Model. Langmuir, 2014, 30, 2768-2778.	3.5	30
90	Analytical modeling of micelle growth. 1. Chain-conformation free energy of binary mixed spherical, wormlike and lamellar micelles. Journal of Colloid and Interface Science, 2019, 547, 245-255.	9.4	30

#	Article	IF	Citations
91	Erythrocyte attachment to substrates: determination of membrane tension and adhesion energy. Colloids and Surfaces B: Biointerfaces, 2000, 19, 61-80.	5.0	29
92	Monolayers of Globular Proteins on the Air/Water Interface:Â Applicability of the Volmer Equation of State. Langmuir, 2003, 19, 7362-7369.	3.5	29
93	Hydration force due to the reduced screening of the electrostatic repulsion in few-nanometer-thick films. Current Opinion in Colloid and Interface Science, 2011, 16, 517-524.	7.4	29
94	Depletion forces in thin liquid films due to nonionic and ionic surfactant micelles. Current Opinion in Colloid and Interface Science, 2015, 20, 11-18.	7.4	29
95	Surface shear rheology of hydrophobin adsorption layers: laws of viscoelastic behaviour with applications to long-term foam stability. Faraday Discussions, 2012, 158, 195.	3.2	28
96	Surface Shear Rheology of Adsorption Layers from the Protein HFBII Hydrophobin: Effect of Added \hat{l}^2 -Casein. Langmuir, 2012, 28, 4168-4177.	3. 5	27
97	Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation. Advances in Colloid and Interface Science, 2018, 251, 80-96.	14.7	27
98	Disclike vs. cylindrical micelles: Generalized model of micelle growth and data interpretation. Journal of Colloid and Interface Science, 2014, 416, 258-273.	9.4	25
99	Effect of the surface expansion and wettability of the capillary on the dynamic surface tension measured by the maximum bubble pressure method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1996, 113, 117-126.	4.7	24
100	Stokes flow caused by the motion of a rigid sphere close to a viscous interface. Chemical Engineering Science, 1998, 53, 3413-3434.	3.8	24
101	Electric charging of thin films measured using the contrast transfer function. Ultramicroscopy, 2001, 87, 45-54.	1.9	24
102	Sulfonated methyl esters, linear alkylbenzene sulfonates and their mixed solutions: Micellization and effect of Ca2+ ions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 519, 87-97.	4.7	24
103	Rheology of mixed solutions of sulfonated methyl esters and betaine in relation to the growth of giant micelles and shampoo applications. Advances in Colloid and Interface Science, 2020, 275, 102062.	14.7	24
104	Adsorption Kinetics of Ionic Surfactants after a Large Initial Perturbation. Effect of Surface Elasticity. Langmuir, 2000, 16, 2942-2956.	3.5	23
105	Analytical modeling of micelle growth. 2. Molecular thermodynamics of mixed aggregates and scission energy in wormlike micelles. Journal of Colloid and Interface Science, 2019, 551, 227-241.	9.4	23
106	Effect of Nonionic Admixtures on the Adsorption of Ionic Surfactants at Fluid Interfaces. 2. Sodium Dodecylbenzene Sulfonate and Dodecylbenzene. Langmuir, 2003, 19, 5019-5030.	3.5	22
107	Effect of disjoining pressure on the drainage and relaxation dynamics of liquid films with mobile interfaces. Journal of Colloid and Interface Science, 2009, 336, 273-284.	9.4	22
108	Motion of a massive microsphere bound to a spherical vesicle. Europhysics Letters, 1997, 40, 405-410.	2.0	21

#	Article	IF	CITATIONS
109	Analytical modeling of micelle growth. 4. Molecular thermodynamics of wormlike micelles from ionic surfactants: Theory vs. experiment. Journal of Colloid and Interface Science, 2021, 584, 561-581.	9.4	21
110	Hydrodynamic instability and coalescence in trains of emulsion drops or gas bubbles moving through a narrow capillary. Journal of Colloid and Interface Science, 2003, 267, 243-258.	9.4	20
111	Shear rheology of mixed protein adsorption layers vs their structure studied by surface force measurements. Advances in Colloid and Interface Science, 2015, 222, 148-161.	14.7	20
112	Reconstruction of the electric charge density in thin films from the contrast transfer function measurements. Ultramicroscopy, 2002, 90, 85-95.	1.9	19
113	Limited coalescence and Ostwald ripening in emulsions stabilized by hydrophobin HFBII and milk proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 509, 521-538.	4.7	19
114	Influence of the surface viscosity on the drag and torque coefficients of a solid particle in a thin liquid layer. Chemical Engineering Science, 1995, 50, 263-277.	3.8	18
115	Solubility limits and phase diagrams for fatty alcohols in anionic (SLES) and zwitterionic (CAPB) micellar surfactant solutions. Journal of Colloid and Interface Science, 2015, 449, 46-61.	9.4	18
116	Adhesion of bubbles and drops to solid surfaces, and anisotropic surface tensions studied by capillary meniscus dynamometry. Advances in Colloid and Interface Science, 2016, 233, 223-239.	14.7	18
117	The Effect of Oil Solubility on the Oil Drop Entry at Waterâ^'Air Interfaceâ€. Langmuir, 2000, 16, 8892-8902.	3.5	16
118	Forces acting on dielectric colloidal spheres at a water/nonpolar fluid interface in an external electric field. 2. Charged particles. Journal of Colloid and Interface Science, 2013, 405, 269-277.	9.4	16
119	Competitive adsorption of the protein hydrophobin and an ionic surfactant: Parallel vs sequential adsorption and dilatational rheology. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 307-317.	4.7	16
120	Encapsulation of oils and fragrances by core-in-shell structures from silica particles, polymers and surfactants: The brick-and-mortar concept. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 559, 351-364.	4.7	16
121	Disjoining pressure of thin films stabilized by nonionic surfactants. Advances in Colloid and Interface Science, 2006, 128-130, 185-215.	14.7	15
122	In vitro study of triglyceride lipolysis and phase distribution of the reaction products and cholesterol: effects of calcium and bicarbonate. Food and Function, 2012, 3, 1206.	4.6	15
123	Hydrodynamic cavitation: a bottom-up approach to liquid aeration. Soft Matter, 2012, 8, 4562.	2.7	15
124	Analytical modeling of micelle growth. 3. Electrostatic free energy of ionic wormlike micelles – Effects of activity coefficients and spatially confined electric double layers. Journal of Colloid and Interface Science, 2021, 581, 262-275.	9.4	15
125	Slow motions of a solid spherical particle close to a viscous interface. International Journal of Multiphase Flow, 1995, 21, 1169-1189.	3.4	14
126	Method for analysis of the composition of acid soaps by electrolytic conductivity measurements. Journal of Colloid and Interface Science, 2008, 327, 169-179.	9.4	14

#	Article	IF	CITATIONS
127	Role of surfactants on the approaching velocity of two small emulsion drops. Journal of Colloid and Interface Science, 2012, 368, 342-355.	9.4	14
128	Extension of the ladder model of self-assembly from cylindrical to disclike surfactant micelles. Current Opinion in Colloid and Interface Science, 2013, 18, 524-531.	7.4	14
129	Reply to Comment on Electrodipping Force Acting on Solid Particles at a Fluid Interface. Langmuir, 2006, 22, 848-849.	3.5	13
130	Coexistence of micelles and crystallites in solutions of potassium myristate: Soft matter vs. solid matter. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 354, 172-187.	4.7	13
131	Production and characterization of stable foams with fine bubbles from solutions of hydrophobin HFBII and its mixtures with other proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 521, 92-104.	4.7	13
132	Hydrodynamic forces acting on a microscopic emulsion drop growing at a capillary tip in relation to the process of membrane emulsification. Journal of Colloid and Interface Science, 2007, 316, 844-857.	9.4	12
133	Effect of Ionic Correlations on the Surface Forces in Thin Liquid Films: Influence of Multivalent Coions and Extended Theory. Materials, 2016, 9, 145.	2.9	12
134	Influence of electrolytes on the dynamic surface tension of ionic surfactant solutions: Expanding and immobile interfaces. Journal of Colloid and Interface Science, 2006, 303, 56-68.	9.4	11
135	Shear rheology of hydrophobin adsorption layers at oil/water interfaces and data interpretation in terms of a viscoelastic thixotropic model. Soft Matter, 2014, 10, 5777.	2.7	11
136	Oil drop deposition on solid surfaces in mixed polymer-surfactant solutions in relation to hair- and skin-care applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 53-61.	4.7	11
137	Properties of the micelles of sulfonated methyl esters determined from the stepwise thinning of foam films and by rheological measurements. Journal of Colloid and Interface Science, 2019, 538, 660-670.	9.4	11
138	Rheology of particle/water/oil three-phase dispersions: Electrostatic vs. capillary bridge forces. Journal of Colloid and Interface Science, 2018, 513, 515-526.	9.4	11
139	Origin of the extremely high elasticity of bulk emulsions, stabilized by Yucca Schidigera saponins. Food Chemistry, 2020, 316, 126365.	8.2	10
140	On the slow motion of an interfacial viscous droplet in a thin liquid layer. Chemical Engineering Science, 1995, 50, 2943-2956.	3.8	9
141	Motion of a massive particle attached to a spherical interface: statistical properties of the particle path. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 149, 245-251.	4.7	9
142	Forces acting on dielectric colloidal spheres at a water/nonpolar-fluid interface in an external electric field. 1. Uncharged particles. Journal of Colloid and Interface Science, 2013, 405, 278-290.	9.4	9
143	Encapsulation of fragrances and oils by core-shell structures from silica nanoparticles, surfactant and polymer: Effect of particle size. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 606, 125558.	4.7	9
144	Micellar surfactant solutions: Dynamics of adsorption at fluid interfaces subjected to stationary expansion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 282-283, 143-161.	4.7	8

#	Article	IF	CITATIONS
145	Micellar solutions of ionic surfactants and their mixtures with nonionic surfactants: Theoretical modeling vs. Experiment. Colloid Journal, 2014, 76, 255-270.	1.3	8
146	Effect of Surfactants on Drop Stability and Thin Film Drainage. , 2004, , 1-38.		7
147	Vortex in liquid films from concentrated surfactant solutions containing micelles and colloidal particles. Journal of Colloid and Interface Science, 2020, 576, 345-355.	9.4	6
148	Kinetics of transfer of volatile amphiphiles (fragrances) from vapors to aqueous drops and vice versa: Interplay of diffusion and barrier mechanisms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 625, 126931.	4.7	6
149	Reply to Comment on "Hydrophobic Forces in the Foam Films Stabilized by Sodium Dodecyl Sulfate:  Effect of Electrolyte―and Subsequent Criticism. Langmuir, 2008, 24, 2953-2953.	3.5	5
150	Shape analysis of a rotating axisymmetric drop in gravitational field: Comparison of numerical schemes for real-time data processing. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 75-85.	4.7	5
151	Phase separation of saturated micellar network and its potential applications for nanoemulsification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 607, 125487.	4.7	5
152	Solubility of ionic surfactants below their Krafft point in mixed micellar solutions: Phase diagrams for methyl ester sulfonates and nonionic cosurfactants. Journal of Colloid and Interface Science, 2021, 601, 474-485.	9.4	5
153	Role of Surface Forces in the Stability of Evaporating Thin Liquid Films That Contain Surfactant Micelles. Journal of Colloid and Interface Science, 1998, 198, 224-240.	9.4	4
154	Motion of long bubbles in gravity- and pressure-driven flow through cylindrical capillaries up to moderate capillary numbers. Physics of Fluids, 2021, 33, .	4.0	4
155	Asymptotic formulae for the interaction force and torque between two charged parallel cylinders. Applied Mathematics and Computation, 2015, 256, 642-655.	2.2	1
156	Analytical modeling of micelle growth. 5. Molecular thermodynamics of micelles from zwitterionic surfactants. Journal of Colloid and Interface Science, 2022, 627, 469-482.	9.4	1
157	Application of the model-free approach to low molecular weight systems with hindered internal rotation: cinnamoylmesitylene. Magnetic Resonance in Chemistry, 2003, 41, 989-995.	1.9	0