Xin Long

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6970859/publications.pdf Version: 2024-02-01

VINLONG

#	Article	IF	CITATIONS
1	Nitrous acid emission from soil bacteria and related environmental effect over the North China Plain. Chemosphere, 2022, 287, 132034.	8.2	3
2	Efficient Atmospheric Transport of Microplastics over Asia and Adjacent Oceans. Environmental Science & Technology, 2022, 56, 6243-6252.	10.0	33
3	Simulated Sensitivity of Ozone Generation to Precursors in Beijing during a High O3 Episode. Advances in Atmospheric Sciences, 2021, 38, 1223-1237.	4.3	13
4	Elucidating the impacts of rapid urban expansion on air quality in the Yangtze River Delta, China. Science of the Total Environment, 2021, 799, 149426.	8.0	14
5	A Rapid Model (COV_PSDI) for Winter Wheat Mapping in Fallow Rotation Area Using MODIS NDVI Time-Series Satellite Observations: The Case of the Heilonggang Region. Remote Sensing, 2021, 13, 4870.	4.0	4
6	Evaluation of WRF-CMAQ simulated climatological mean and extremes of fine particulate matter of the United States and its correlation with climate extremes. Atmospheric Environment, 2020, 222, 117181.	4.1	8
7	Ozone enhancement due to the photodissociation of nitrous acid in eastern China. Atmospheric Chemistry and Physics, 2019, 19, 11267-11278.	4.9	20
8	Emission Characteristics of Primary Brown Carbon Absorption From Biomass and Coal Burning: Development of an Optical Emission Inventory for China. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1879-1893.	3.3	62
9	Effect of ship emissions on O3 in the Yangtze River Delta region of China: Analysis of WRF-Chem modeling. Science of the Total Environment, 2019, 683, 360-370.	8.0	32
10	High Contribution of Secondary Brown Carbon to Aerosol Light Absorption in the Southeastern Margin of Tibetan Plateau. Geophysical Research Letters, 2019, 46, 4962-4970.	4.0	70
11	Shortâ€Term Weather Patterns Modulate Air Quality in Eastern China During 2015–2016 Winter. Journal of Geophysical Research D: Atmospheres, 2019, 124, 986-1002.	3.3	8
12	Impact of Climate Change on Siberian High and Wintertime Air Pollution in China in Past Two Decades. Earth's Future, 2018, 6, 118-133.	6.3	49
13	WRF-Chem modeling of particulate matter in the Yangtze River Delta region: Source apportionment and its sensitivity to emission changes. PLoS ONE, 2018, 13, e0208944.	2.5	17
14	Effect of ecological restoration programs on dust concentrations in the North China Plain: a case study. Atmospheric Chemistry and Physics, 2018, 18, 6353-6366.	4.9	16
15	Effect of biomass burning on black carbon (BC) in South Asia and Tibetan Plateau: The analysis of WRF-Chem modeling. Science of the Total Environment, 2018, 645, 901-912.	8.0	38
16	Primary PM2.5 and trace gas emissions from residential coal combustion: assessing semi-coke briquette for emission reduction in the Beijing-Tianjin-Hebei region, China. Atmospheric Environment, 2018, 191, 378-386.	4.1	46
17	Does afforestation deteriorate haze pollution in Beijing–Tianjin–Hebei (BTH), China?. Atmospheric Chemistry and Physics, 2018, 18, 10869-10879.	4.9	22
18	Black carbon aerosol and its radiative impact at a highâ€altitude remote site on the southeastern Tibet Plateau. Journal of Geophysical Research D: Atmospheres, 2017, 122, 5515-5530.	3.3	36

Xin Long

#	Article	IF	CITATIONS
19	Impacts of Himalayas on black carbon over the Tibetan Plateau during summer monsoon. Science of the Total Environment, 2017, 598, 307-318.	8.0	15
20	Effect of hydrolysis of N2O5 on nitrate and ammonium formation in Beijing China: WRF-Chem model simulation. Science of the Total Environment, 2017, 579, 221-229.	8.0	44
21	Surface PM2.5, Satellite Distribution of Atmospheric Optical Depth and Related Effects on Crop Production in China. , 2017, , 479-488.		3
22	PM2.5 emissions and source profiles from open burning of crop residues. Atmospheric Environment, 2017, 169, 229-237.	4.1	50
23	Widespread and persistent ozone pollution in eastern China during the non-winter season of 2015: observations and source attributions. Atmospheric Chemistry and Physics, 2017, 17, 2759-2774.	4.9	138
24	Impacts of meteorological uncertainties on the haze formation in Beijing–Tianjin–Hebei (BTH) during wintertime: a case study. Atmospheric Chemistry and Physics, 2017, 17, 14579-14591.	4.9	56
25	Effect of heavy haze and aerosol pollution on rice and wheat productions in China. Scientific Reports, 2016, 6, 29612.	3.3	103
26	Microscale spatial distribution and health assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) at nine communities in Xi'an, China. Environmental Pollution, 2016, 218, 1065-1073.	7.5	55
27	Impact of crop field burning and mountains on heavy haze in the North China Plain: a case study. Atmospheric Chemistry and Physics, 2016, 16, 9675-9691.	4.9	69
28	Urban dust in the Guanzhong basin of China, part II: A case study of urban dust pollution using the WRF-Dust model. Science of the Total Environment, 2016, 541, 1614-1624.	8.0	22
29	Urban dust in the Guanzhong Basin of China, part I: A regional distribution of dust sources retrieved using satellite data. Science of the Total Environment, 2016, 541, 1603-1613.	8.0	22
30	Seasonal variation and four-year trend of black carbon in the Mid-west China: The analysis of the ambient measurement and WRF-Chem modeling. Atmospheric Environment, 2015, 123, 430-439.	4.1	33
31	A multidisciplinary approach to trace Asian dust storms from source to sink. Atmospheric Environment, 2015, 105, 43-52.	4.1	33

 $\,$ Vegetation index compositing with AVHRR, MODIS and FY3 VIRR. , 2013, , .