Takashi Mino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6970633/publications.pdf Version: 2024-02-01

Τλέλομι Μίνιο

#	Article	IF	CITATIONS
1	Cyclin J–CDK complexes limit innate immune responses by reducing proinflammatory changes in macrophage metabolism. Science Signaling, 2022, 15, eabm5011.	1.6	4
2	Enhancement of Regnase-1 expression with stem loop–targeting antisense oligonucleotides alleviates inflammatory diseases. Science Translational Medicine, 2022, 14, eabo2137.	5.8	8
3	Profibrotic function of pulmonary group 2 innate lymphoid cells is controlled by regnase-1. European Respiratory Journal, 2021, 57, 2000018.	3.1	30
4	Extracellular mRNA transported to the nucleus exerts translation-independent function. Nature Communications, 2021, 12, 3655.	5.8	6
5	Regnaseâ€1–related endoribonucleases in health and immunological diseases. Immunological Reviews, 2021, 304, 97-110.	2.8	12
6	IRAK1-dependent Regnase-1-14-3-3 complex formation controls Regnase-1-mediated mRNA decay. ELife, 2021, 10, .	2.8	12
7	Translation-dependent unwinding of stem–loops by UPF1 licenses Regnase-1 to degrade inflammatory mRNAs. Nucleic Acids Research, 2019, 47, 8838-8859.	6.5	32
8	N4BP1 restricts HIV-1 and its inactivation by MALT1 promotes viral reactivation. Nature Microbiology, 2019, 4, 1532-1544.	5.9	61
9	Pulmonary Regnase-1 orchestrates the interplay of epithelium and adaptive immune systems to protect against pneumonia. Mucosal Immunology, 2018, 11, 1203-1218.	2.7	23
10	Post-transcriptional regulation of immune responses by RNA binding proteins. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 248-258.	1.6	48
11	Regnase-1 Maintains Iron Homeostasis via the Degradation of Transferrin Receptor 1 and Prolyl-Hydroxylase-Domain-Containing Protein 3 mRNAs. Cell Reports, 2017, 19, 1614-1630.	2.9	54
12	NSD3 keeps IRF3 active. Journal of Experimental Medicine, 2017, 214, 3475-3476.	4.2	3
13	Regnase-1 and Roquin Nonredundantly Regulate Th1 Differentiation Causing Cardiac Inflammation and Fibrosis. Journal of Immunology, 2017, 199, 4066-4077.	0.4	42
14	Regnase-1 and Roquin Regulate a Common Element in Inflammatory mRNAs by Spatiotemporally Distinct Mechanisms. Cell, 2015, 161, 1058-1073.	13.5	296
15	Inhibition of DNA Replication of Human Papillomavirus by Using Zinc Finger–Single-Chain Fokl Dimer Hybrid. Molecular Biotechnology, 2014, 56, 731-737.	1.3	10
16	Arid5a controls IL-6 mRNA stability, which contributes to elevation of IL-6 level in vivo. Proceedings of the United States of America, 2013, 110, 9409-9414.	3.3	179
17	Malt1-Induced Cleavage of Regnase-1 in CD4+ Helper T Cells Regulates Immune Activation. Cell, 2013, 153, 1036-1049.	13.5	296
18	Post-transcriptional regulation of cytokine mRNA controls the initiation and resolution of inflammation. Biotechnology and Genetic Engineering Reviews, 2013, 29, 49-60.	2.4	36

Τακάσηι Μίνο

#	Article	IF	CITATION
19	Gene- and Protein-Delivered Zinc Finger–Staphylococcal Nuclease Hybrid for Inhibition of DNA Replication of Human Papillomavirus. PLoS ONE, 2013, 8, e56633.	1.1	21
20	Efficient double-stranded DNA cleavage by artificial zinc-finger nucleases composed of one zinc-finger protein and a single-chain Fokl dimer. Journal of Biotechnology, 2009, 140, 156-161.	1.9	19
21	Cell-permeable artificial zinc-finger proteins as potent antiviral drugs for human papillomaviruses. Archives of Virology, 2008, 153, 1291-1298.	0.9	30
22	Inhibition of human papillomavirus replication by using artificial zinc-finger nucleases. Nucleic Acids Symposium Series, 2008, 52, 185-186.	0.3	5
23	Development of protein-based antiviral drugs for human papillomaviruses. Nucleic Acids Symposium Series, 2007, 51, 427-428.	0.3	2
24	Application of artificial zinc-finger proteins to inhibition of DNA replication of human papillomavirus. Nucleic Acids Symposium Series, 2006, 50, 313-314.	0.3	1
25	Inhibition of DNA Replication of Human Papillomavirus by Artificial Zinc Finger Proteins. Journal of Virology, 2006, 80, 5405-5412.	1.5	25