List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6970315/publications.pdf Version: 2024-02-01

		43973	33814
227	11,333	48	99
papers	citations	h-index	g-index
227	227	227	3593
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Zr–Al–Ni Amorphous Alloys with High Glass Transition Temperature and Significant Supercooled Liquid Region. Materials Transactions, JIM, 1990, 31, 177-183.	0.9	879
2	Amorphous Zr–Al–TM (TM=Co, Ni, Cu) Alloys with Significant Supercooled Liquid Region of Over 100 K. Materials Transactions, JIM, 1991, 32, 1005-1010.	0.9	742
3	Al–La–Ni Amorphous Alloys with a Wide Supercooled Liquid Region. Materials Transactions, JIM, 1989, 30, 965-972.	0.9	704
4	Glass-forming ability of alloys. Journal of Non-Crystalline Solids, 1993, 156-158, 473-480.	1.5	616
5	Bulk amorphous alloys with high mechanical strength and good soft magnetic properties in Fe–TM–B (TM=IV–VIII group transition metal) system. Applied Physics Letters, 1997, 71, 464-466.	1.5	386
6	Production of Amorphous Cylinder and Sheet of La ₅₅ Al ₂₅ Ni ₂₀ Alloy by a Metallic Mold Casting Method. Materials Transactions, JIM, 1990, 31, 425-428.	0.9	335
7	Fabrication of Bulk Glassy Zr ₅₅ Al ₁₀ Ni ₅ Cu _{30Alloy of 30 mm in Diameter by a Suction Casting Method. Materials Transactions, JIM, 1996, 37, 185-187.}	8& g: 9	322
8	Thermal and Mechanical Properties of Ti–Ni–Cu–Sn Amorphous Alloys with a Wide Supercooled Liquid Region before Crystallization. Materials Transactions, JIM, 1998, 39, 1001-1006.	0.9	267
9	Bulk Nd–Fe–Al Amorphous Alloys with Hard Magnetic Properties. Materials Transactions, JIM, 1996, 37, 99-108.	0.9	255
10	Effect of Additional Elements on Glass Transition Behavior and Glass Formation Tendency of Zr–Al–Cu–Ni Alloys. Materials Transactions, JIM, 1995, 36, 1420-1426.	0.9	194
11	New Fe–Co–Ni–Zr–B Amorphous Alloys with Wide Supercooled Liquid Regions and Good Soft Magnetic Properties. Materials Transactions, JIM, 1997, 38, 359-362.	0.9	184
12	Bulk Glass Formation of Ti-Zr-Hf-Cu-M (M=Fe, Co, Ni) Alloys. Materials Transactions, 2002, 43, 277-280.	0.4	178
13	Influence of similar atom substitution on glass formation in (La–Ce)–Al–Co bulk metallic glasses. Acta Materialia, 2007, 55, 3719-3726.	3.8	169
14	Co-based ternary bulk metallic glasses with ultrahigh strength and plasticity. Journal of Materials Research, 2011, 26, 2072-2079.	1.2	151
15	The micro-nanoformability of Pt-based metallic glass and the nanoforming of three-dimensional structures. Intermetallics, 2002, 10, 1241-1247.	1.8	147
16	Microstructural tailoring and improvement of mechanical properties in CuZr-based bulk metallic glass composites. Acta Materialia, 2012, 60, 3128-3139.	3.8	146
17	Amorphous (Ti,Zr, Hf)î—,Niî—,Cu ternary alloys with a wide supercooled liquid region. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1994, 181-182, 1423-1426.	2.6	142
18	Ternary Fe–P–C bulk metallic glass with good soft-magnetic and mechanical properties. Scripta Materialia, 2011, 65, 536-539.	2.6	137

#	Article	IF	CITATIONS
19	Biodegradable Mg–Zn–Ca–Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications. Materials & Design, 2015, 67, 9-19.	5.1	137
20	Thermal and Mechanical Properties of Cu-Based Cu-Zr-Ti Bulk Glassy Alloys. Materials Transactions, 2001, 42, 1149-1151.	0.4	127
21	Thermal Stability and Mechanical Strength of Bulk Glassy Ni-Nb-Ti-Zr Alloys. Materials Transactions, 2002, 43, 1952-1956.	0.4	121
22	Preparation of Ti–Cu–Ni–Si–B Amorphous Alloys with a Large Supercooled Liquid Region. Materials Transactions, JIM, 1999, 40, 301-306.	0.9	116
23	lonic interactions between sulfuric acid and chitosan membranes. Carbohydrate Polymers, 2008, 73, 111-116.	5.1	116
24	Ti-based amorphous alloys with a large supercooled liquid region. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 304-306, 771-774.	2.6	112
25	Nucleation and growth of nanoporous copper ligaments during electrochemical dealloying of Mg-based metallic glasses. Corrosion Science, 2013, 67, 100-108.	3.0	97
26	Hard Magnetic Bulk Amorphous Nd–Fe–Al Alloys of 12 mm in Diameter Made by Suction Casting. Materials Transactions, JIM, 1996, 37, 636-640.	0.9	96
27	Ductile Fe-Based Bulk Metallic Glass with Good Soft-Magnetic Properties. Materials Transactions, 2007, 48, 1157-1160.	0.4	93
28	Al0.3CrxFeCoNi high-entropy alloys with high corrosion resistance and good mechanical properties. Journal of Alloys and Compounds, 2021, 860, 158436.	2.8	81
29	Corrosion Behavior of Zr–(Nb–)Al–Ni–Cu Glassy Alloys. Materials Transactions, JIM, 2000, 41, 1490-1494.	0.9	80
30	New Ti-based Ti–Cu–Zr–Fe–Sn–Si–Ag bulk metallic glass for biomedical applications. Journal of Alloy and Compounds, 2015, 625, 323-327.	^{ys} 2.8	79
31	Bio-corrosion study on zirconium-based bulk-metallic glasses. Intermetallics, 2009, 17, 195-199.	1.8	74
32	Bio-corrosion behavior and in vitro biocompatibility of equimolar TiZrHfNbTa high-entropy alloy. Intermetallics, 2020, 124, 106845.	1.8	74
33	Preparation of Bulk Pr–Fe–Al Amorphous Alloys and Characterization of Their Hard Magnetic Properties. Materials Transactions, JIM, 1996, 37, 1731-1740.	0.9	71
34	Thermal Stability and Magnetic Properties of Bulk Amorphous Fe–Al–Ga–P–C–B–Si Alloys. Materials Transactions, JIM, 1997, 38, 189-196.	0.9	71
35	Microstructure and mechanical properties of Al20â^'xCr20+0.5xFe20Co20Ni20+0.5x high entropy alloys. Journal of Alloys and Compounds, 2016, 659, 279-287.	2.8	71
36	Ni- and Cu-free Zr–Al–Co–Ag bulk metallic glasses with superior glass-forming ability. Journal of Materials Research, 2011, 26, 539-546.	1.2	69

#	Article	IF	CITATIONS
37	New Ti-Based Bulk Metallic Glasses with Significant Plasticity. Materials Transactions, 2005, 46, 2218-2220.	0.4	66
38	Corrosion behavior and in vitro biocompatibility of Zr–Al–Co–Ag bulk metallic glasses: An experimental case study. Journal of Non-Crystalline Solids, 2012, 358, 1599-1604.	1.5	62
39	Biocompatible Ni-free Zr-based bulk metallic glasses with high-Zr-content: Compositional optimization for potential biomedical applications. Materials Science and Engineering C, 2014, 44, 400-410.	3.8	61
40	Effects of Yttrium and Erbium Additions on Glass-Forming Ability and Mechanical Properties of Bulk Glassy Zr–Al–Ni–Cu Alloys. Materials Transactions, 2006, 47, 450-453.	0.4	59
41	Effect of similar elements on improving glass-forming ability of La–Ce-based alloys. Journal of Alloys and Compounds, 2009, 483, 60-63.	2.8	59
42	Enhanced degradation of azo dye by nanoporous-copper-decorated Mg–Cu–Y metallic glass powder through dealloying pretreatment. Applied Surface Science, 2014, 305, 314-320.	3.1	59
43	Corrosion Behavior of Cu-Zr-Ti-Nb Bulk Glassy Alloys. Materials Transactions, 2003, 44, 749-753.	0.4	57
44	Fracture Toughness of Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ Bulk Metallic Glass by 3-Point Bend Testing. Materials Transactions, 2005, 46, 1725-1732.	0.4	55
45	Formation and mechanical properties of (Ce–La–Pr–Nd)–Co–Al bulk glassy alloys with superior glass-forming ability. Scripta Materialia, 2006, 54, 1123-1126.	2.6	55
46	The effect of atomic size on the stability of supercooled liquid for amorphous (Ti, Zr, Hf)65Ni25Al10 and (Ti, Zr, Hf)65Cu25Al10 alloys. Materials Letters, 1993, 15, 379-382.	1.3	53
47	Formation, corrosion behavior, and mechanical properties of bulk glassy Zr–Al–Co–Nb alloys. Journal of Materials Research, 2003, 18, 1652-1658.	1.2	53
48	Bulk glassy Ni(Co–)Nb–Ti–Zr alloys with high corrosion resistance and high strength. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 375-377, 368-371.	2.6	50
49	Compressibility and hardness of Co-based bulk metallic glass: A combined experimental and density functional theory study. Applied Physics Letters, 2011, 99, .	1.5	49
50	Induced multiple heterogeneities and related plastic improvement by laser surface treatment in CuZr-based bulk metallic glass. Intermetallics, 2012, 24, 50-55.	1.8	47
51	Correlations between the wear resistance and properties of bulk metallic glasses. Intermetallics, 2018, 93, 290-298.	1.8	47
52	Three-dimensional nanoporous copper with high surface area by dealloying Mg–Cu–Y metallic glasses. Materials Letters, 2012, 76, 96-99.	1.3	45
53	Design and properties of novel Ti–Zr–Hf–Nb–Ta high-entropy alloys for biomedical applications. Intermetallics, 2022, 141, 107421.	1.8	45
54	Ductile Fe–Mo–P–C–B–Si bulk metallic glasses with high saturation magnetization. Journal of Alloys and Compounds, 2009, 483, 613-615.	2.8	44

#	Article	IF	CITATIONS
55	A multicomponent TiZr-based amorphous brazing filler metal for high-strength joining of titanium alloy. Scripta Materialia, 2016, 117, 55-59.	2.6	44
56	New Glassy Zr-Al-Fe and Zr-Al-Co Alloys with a Large Supercooled Liquid Region. Materials Transactions, 2002, 43, 267-270.	0.4	42
57	Formation, Thermal Stability and Mechanical Properties in Zr-Al-Co Bulk Glassy Alloys. Materials Transactions, 2002, 43, 2843-2846.	0.4	41
58	Improvement in mechanical properties of a Zr-based bulk metallic glass by laser surface treatment. Journal of Alloys and Compounds, 2010, 504, S45-S47.	2.8	40
59	Effects of Metalloid B Addition on the Glass Formation, Magnetic and Mechanical Properties of FePCB Bulk Metallic Glasses. Journal of Materials Science and Technology, 2015, 31, 493-497.	5.6	38
60	Surface vitrification of alloys by laser surface treatment. Journal of Alloys and Compounds, 2012, 511, 215-220.	2.8	37
61	Tribocorrosion behaviors of a biodegradable Mg65Zn30Ca5 bulk metallic glass for potential biomedical implant applications. Journal of Alloys and Compounds, 2018, 745, 111-120.	2.8	37
62	Quasi phase transition model of shear bands in metallic glasses. Acta Materialia, 2011, 59, 7416-7424.	3.8	35
63	Pronounced ductility in CuZrAl ternary bulk metallic glass composites with optimized microstructure through melt adjustment. AIP Advances, 2012, 2, 032176.	0.6	35
64	Near room-temperature magnetocaloric effect in FeMnPBC metallic glasses with tunable Curie temperature. Journal of Magnetism and Magnetic Materials, 2013, 347, 131-135.	1.0	34
65	Towards improved integrated properties in FeCrPCB bulk metallic glasses by Cr addition. Intermetallics, 2015, 61, 16-20.	1.8	34
66	Formation and evolution of nanoporous bimetallic Ag-Cu alloy by electrochemically dealloying Mg-(Ag-Cu)-Y metallic glass. Corrosion Science, 2017, 119, 23-32.	3.0	34
67	Tribological behaviors of high-hardness Co-based amorphous coatings fabricated by laser cladding. Tribology International, 2021, 162, 107142.	3.0	34
68	Corrosion resistant Cr-based bulk metallic glasses with high strength and hardness. Journal of Non-Crystalline Solids, 2015, 410, 20-25.	1.5	33
69	Bulk Glassy Alloys with Low Liquidus Temperature in Pt-Cu-P System. Materials Transactions, 2003, 44, 1143-1146.	0.4	32
70	Optimization of mechanical properties of bulk metallic glasses by residual stress adjustment using laser surface melting. Scripta Materialia, 2012, 66, 1057-1060.	2.6	32
71	Effects of minor Cu addition on glass-forming ability and magnetic properties of FePCBCu alloys with high saturation magnetization. Philosophical Magazine, 2013, 93, 2182-2189.	0.7	32
72	In vitro investigation of Mg–Zn–Ca–Ag bulk metallic glasses for biomedical applications. Journal of Non-Crystalline Solids, 2015, 427, 134-138.	1.5	32

#	Article	IF	CITATIONS
73	Glass formation, corrosion behavior, and mechanical properties of novel Cr-rich Cr–Fe–Mo–C–B–Y bulk metallic glasses. Journal of Alloys and Compounds, 2015, 625, 318-322.	2.8	32
74	A centimeter-size Zr 40 Hf 10 Ti 4 Y 1 Al 10 Cu 25 Ni 7 Co 2 Fe 1 bulk metallic glass with high mixing entropy designed by multi-substitution. Journal of Non-Crystalline Solids, 2015, 410, 39-42.	1.5	32
75	Formation and properties of Ti-based Ti–Zr–Cu–Fe–Sn–Si bulk metallic glasses with different (TiÂ+ÂZr)/Cu ratios for biomedical application. Intermetallics, 2016, 72, 36-43.	1.8	32
76	Centimeter-scale-diameter Co-based bulk metallic glasses with fracture strength exceeding 5000 MPa. Science Bulletin, 2011, 56, 3972-3977.	1.7	31
77	Dry and lubricated tribological behavior of a Ni- and Cu-free Zr-based bulk metallic glass. Journal of Non-Crystalline Solids, 2015, 426, 63-71.	1.5	31
78	Niâ€free Zr–Cu–Al–Nb–Pd bulk metallic glasses with different Zr/Cu ratios for biomedical applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2012, 100B, 1472-1482.	1.6	30
79	Design and preparation of nanoporous Ag–Cu alloys by dealloying Mg–(Ag,Cu)–Y metallic glasses for antibacterial applications. Journal of Materials Chemistry B, 2019, 7, 4169-4176.	2.9	30
80	Ti Cu Zr Fe Sn Si Sc bulk metallic glasses with good mechanical properties for biomedical applications. Journal of Alloys and Compounds, 2016, 679, 341-349.	2.8	29
81	Nanoporous metallic-glass electrocatalysts for highly efficient oxygen evolution reaction. Journal of Alloys and Compounds, 2021, 852, 156876.	2.8	29
82	Novel low Cu content and Ni-free Zr-based bulk metallic glasses for biomedical applications. Journal of Non-Crystalline Solids, 2013, 363, 1-5.	1.5	28
83	A Ni-free high-zirconium-based bulk metallic glass with enhanced plasticity and biocompatibility. Journal of Non-Crystalline Solids, 2013, 376, 133-138.	1.5	28
84	Fe–Al–P–C–B bulk metallic glass with good mechanical and soft magnetic properties. Journal of Alloys and Compounds, 2015, 637, 5-9.	2.8	28
85	Tunable magnetic properties and heat-treatable bending ductility of Fe-Co-B-P-C amorphous alloys with a high saturated magnetization up to 1.79†T. Journal of Alloys and Compounds, 2019, 778, 302-308.	2.8	28
86	Antimicrobial behavior of Cu-bearing Zr-based bulk metallic glasses. Materials Science and Engineering C, 2014, 39, 325-329.	3.8	27
87	Glass-forming ability, crystallization kinetics, mechanical property, and corrosion behavior of Zr–Al–Ni–Ag glassy alloys. Journal of Alloys and Compounds, 2014, 602, 339-345.	2.8	27
88	A new strategy to fabricate nanoporous iron-based metallic glasses: Selective phase tailoring of amorphous-nanocrystalline composite alloys through electrochemical dissolution. Scripta Materialia, 2017, 133, 14-18.	2.6	27
89	Effects of Additional Elements on the Glass Formation and Corrosion Behavior of Bulk Glassy Cu-Hf-Ti Alloys. Materials Transactions, 2003, 44, 1042-1045.	0.4	26
90	Nitrogen-doping effect on glass formation and primary phase selection in Cu–Zr–Al alloys. Journal of Alloys and Compounds, 2011, 509, 5033-5037.	2.8	26

#	Article	IF	CITATIONS
91	General synthesis of sponge-like ultrafine nanoporous metals by dealloying in citric acid. Nano Research, 2016, 9, 2467-2477.	5.8	26
92	Formation and properties of centimeter-size Zr–Ti–Cu–Al–Y bulk metallic glasses as potential biomaterials. Journal of Alloys and Compounds, 2016, 656, 389-394.	2.8	26
93	Effect of primary α-Fe on soft magnetic properties of FeCuNbSiB amorphous/nanocrystalline alloy. Journal of Non-Crystalline Solids, 2021, 571, 121079.	1.5	26
94	Synthesis and mechanical properties of TiC-reinforced Cu-based bulk metallic glass composites. Scripta Materialia, 2009, 60, 84-87.	2.6	25
95	Effects of minor Sn addition on the glass formation and properties of Fe-metalloid metallic glasses with high magnetization and high glass forming ability. Journal of Magnetism and Magnetic Materials, 2015, 378, 417-423.	1.0	25
96	Formation and mechanical properties of Ni-free Zr-based bulk metallic glasses. Journal of Alloys and Compounds, 2011, 509, S175-S178.	2.8	24
97	Effect of Ni addition on the glass-forming ability and soft-magnetic properties of FeNiBPNb metallic glasses. Science Bulletin, 2011, 56, 3932-3936.	1.7	24
98	Effects of noble elements on the glass-forming ability, mechanical property, electrochemical behavior and tribocorrosion resistance of Ni- and Cu-free Zr-Al-Co bulk metallic glass. Journal of Alloys and Compounds, 2017, 725, 403-414.	2.8	24
99	Corrosion-fatigue study of a Zr-based bulk-metallic glass in a physiologically relevant environment. Journal of Alloys and Compounds, 2010, 504, S159-S162.	2.8	23
100	Large-sized CuZr-based Bulk Metallic Glass Composite with Enhanced Mechanical Properties. Journal of Materials Science and Technology, 2014, 30, 590-594.	5.6	23
101	In-situ constructed Ru-rich porous framework on NiFe-based ribbon for enhanced oxygen evolution reaction in alkaline solution. Journal of Materials Science and Technology, 2021, 70, 197-204.	5.6	23
102	Biocompatible Zr-Al-Fe bulk metallic glasses with large plasticity. Science China: Physics, Mechanics and Astronomy, 2012, 55, 1664-1669.	2.0	22
103	Thermal stability, crystallization and soft magnetic properties of Fe-P-C-based glassy alloys. Journal of Non-Crystalline Solids, 2016, 454, 39-45.	1.5	22
104	Synthesis of Fe 75 Cr 5 (PBC) 20 bulk metallic glasses with a combination of desired merits using industrial ferro-alloys without high-purity materials. Journal of Alloys and Compounds, 2017, 699, 92-97.	2.8	22
105	Correlation between dealloying conditions and coarsening behaviors of nanoporous silver produced by chemical dealloying of Ca-Ag metallic glass. Journal of Alloys and Compounds, 2017, 695, 1600-1609.	2.8	22
106	Tribological behaviors of a Ni-free Ti-based bulk metallic glass in air and a simulated physiological environment. Journal of Alloys and Compounds, 2018, 766, 1030-1036.	2.8	22
107	Formation of nanoporous silver by dealloying Ca–Ag metallic glasses in water. Intermetallics, 2015, 67, 166-170.	1.8	21
108	In vitro responses of bone-forming MC3T3-E1 pre-osteoblasts to biodegradable Mg-based bulk metallic glasses. Materials Science and Engineering C, 2016, 68, 632-641.	3.8	21

#	Article	IF	CITATIONS
109	Formation and High Mechanical Strength of Bulk Glassy Alloys in Zr-Al-Co-Cu System. Materials Transactions, 2003, 44, 1839-1844.	0.4	20
110	Tuning glass formation and brittle behaviors by similar solvent element substitution in (Mn,Fe)-based bulk metallic glasses. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 626, 16-26.	2.6	20
111	Influences of laser surface melting on microstructure, mechanical properties and corrosion resistance of dual-phase Cr–Fe–Co–Ni–Al high entropy alloys. Journal of Alloys and Compounds, 2020, 826, 154100.	2.8	20
112	The Influence of Similar Element Coexistence in (La-Ce)-Al-(Co-Cu) Bulk Metallic Glasses. Materials Transactions, 2007, 48, 1680-1683.	0.4	19
113	Effect of Mo element on the properties of Fe–Mo–P–C–B bulk metallic glasses. Journal of Non-Crystalline Solids, 2009, 355, 1444-1447.	1.5	19
114	Crystallization and thermophysical properties of Cu46Zr47Al6Co1 bulk metallic glass. AIP Advances, 2013, 3, .	0.6	19
115	Self-oxidized sponge-like nanoporous nickel alloy in three-dimensions with pseudocapacitive behavior and excellent capacitive performance. Journal of Power Sources, 2018, 399, 192-198.	4.0	19
116	Effect of similar element substitution on Fe-B-Si-Mo bulk metallic glasses studied by experiment and ab initio molecular dynamics simulation. Journal of Alloys and Compounds, 2019, 784, 1139-1144.	2.8	19
117	Nanocrystalline Fe83Si4B10P2Cu1 ribbons with improved soft magnetic properties and bendability prepared via rapid annealing of the amorphous precursor. Journal of Magnetism and Magnetic Materials, 2021, 523, 167583.	1.0	19
118	Formation, thermal stability and corrosion behavior of glassy Ti45Zr5Cu45Ni5 alloy. Intermetallics, 2007, 15, 683-686.	1.8	18
119	Corrosion fatigue behavior of a Mg-based bulk metallic glass in a simulated physiological environment. Intermetallics, 2016, 73, 31-39.	1.8	18
120	Formation of ultrafine spongy nanoporous metals (Ni, Cu, Pd, Ag and Au) by dealloying metallic glasses in acids with capping effect. Corrosion Science, 2019, 153, 1-11.	3.0	18
121	Dry wear behavior and mechanism of a Fe-based bulk metallic glass: description by Hertzian contact calculation and finite-element method simulation. Journal of Non-Crystalline Solids, 2020, 543, 120065.	1.5	18
122	Misch metal based metallic glasses. Journal of Alloys and Compounds, 2008, 450, 181-184.	2.8	17
123	AlNiY chill-zone alloys with good mechanical properties. Journal of Alloys and Compounds, 2009, 477, 346-349.	2.8	17
124	Spray formed Al-based amorphous matrix nanocomposite plate. Journal of Alloys and Compounds, 2011, 509, L169-L173.	2.8	16
125	A study on the surface structures and properties of Ni-free Zr-based bulk metallic glasses after Ar and Ca ion implantation. Intermetallics, 2013, 41, 35-43.	1.8	16
126	Effects of boron content on the glass-forming ability and mechanical properties of Co–B–Ta glassy alloys. Journal of Alloys and Compounds, 2014, 617, 7-11.	2.8	16

#	Article	IF	CITATIONS
127	Effects of lutetium addition on formation, oxidation and tribological properties of a Zr-based bulk metallic glass. Intermetallics, 2017, 90, 81-89.	1.8	16
128	A Ti–Zr–Cu–Ni–Co–Fe–Al–Sn amorphous filler metal for improving the strength of Ti–6Al–4V a brazing joint. Progress in Natural Science: Materials International, 2017, 27, 687-694.	alloy 1.8	16
129	Non-isothermal crystallization kinetics of Fe 75 Cr 5 P 9 B 4 C 7 metallic glass with a combination of desired merits. Vacuum, 2018, 152, 8-14.	1.6	16
130	Isothermal crystallization kinetics of Fe75Cr5P9B4C7 metallic glass with cost-effectiveness and desirable merits. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1309-1315.	2.0	16
131	Fabrication of Bulk Glassy Hf ₅₀ Cu ₃₀ Ni ₁₀ Al ₁₀ Alloy by Copper Mold Casting. Materials Transactions, 2002, 43, 2357-2359.	0.4	15
132	Formation of Ti–Zr–Cu–Ni–Sn–Si bulk metallic glasses with good plasticity. Journal of Alloys and Compounds, 2010, 504, S10-S13.	2.8	15
133	Coring micron- and milli-scale holes in metallic glasses. Journal of Non-Crystalline Solids, 2011, 357, 3190-3194.	1.5	15
134	Tunable magnetic and magnetocaloric properties in heavy rare-earth based metallic glasses through the substitution of similar elements. Journal of Applied Physics, 2014, 115, 133903.	1.1	15
135	Ternary La–Al–C bulk metallic glasses. Intermetallics, 2014, 52, 92-96.	1.8	15
136	Fabrication of Three-Dimensional Nanoporous Nickel by Dealloying Mg-Ni-Y Metallic Glasses in Citric Acid Solutions for High-Performance Energy Storage. Journal of the Electrochemical Society, 2017, 164, A348-A354.	1.3	15
137	Glass formation and properties of Ti-based bulk metallic glasses as potential biomaterials with Nb additions. Rare Metals, 2018, 37, 831-837.	3.6	15
138	Controllable brittleness in soft-magnetic Fe-P-C-B metallic glasses through composition design. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 766, 138385.	2.6	15
139	Nanolayered flaky Fe-based amorphous-nanocrystalline/graphite sheet composites with enhanced microwave absorbing properties. Journal of Alloys and Compounds, 2019, 797, 39-44.	2.8	15
140	Glass-Forming Ability and Mechanical Properties of Sm-Doped Fe–Cr–Mo–C–B Glassy Alloys. Materials Transactions, 2005, 46, 2949-2953.	0.4	14
141	Chill-zone aluminum alloys with GPa strength and good plasticity. Journal of Materials Research, 2009, 24, 1513-1521.	1.2	14
142	Effect of the cooling rate on plastic deformability of a Zr-based bulk metallic glass. Science China: Physics, Mechanics and Astronomy, 2010, 53, 415-418.	2.0	14
143	Effect of cooling rate on microstructure and mechanical properties of rapidly solidified Al-based bulk alloys. Journal of Alloys and Compounds, 2010, 504, S117-S122.	2.8	14
144	Homogeneous Nanoporous Ni Particles Produced by Dealloying Mg-Based Metallic Glass as Efficient Hydrogen Evolution Electrocatalyst. Journal of the Electrochemical Society, 2018, 165, F207-F214.	1.3	14

#	Article	IF	CITATIONS
145	Ti–Zr–Cu–Fe–Sn–Si–Ag–Ta bulk metallic glasses with good corrosion resistance as potential biomaterials. Rare Metals, 2020, 39, 688-694.	3.6	14
146	Influence of laser surface melting on glass formation and tribological behaviors of Zr ₅₅ Al ₁₀ Ni ₅ Cu ₃₀ alloy. Journal of Materials Research, 2011, 26, 2642-2652.	1.2	13
147	Glass-forming ability, fragility parameter, and mechanical properties of Co–Ir–Ta–B amorphous alloys. Journal of Alloys and Compounds, 2013, 576, 375-379.	2.8	13
148	Surface engineering of a Zr-based bulk metallic glass with low energy Ar- or Ca-ion implantation. Materials Science and Engineering C, 2015, 47, 248-255.	3.8	13
149	Tensile plasticity in monolithic bulk metallic glass with sandwiched structure. Journal of Alloys and Compounds, 2016, 688, 724-728.	2.8	13
150	Corrosion behavior of a glassy Ti–Zr–Hf–Cu–Ni–Si alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 449-451, 557-560.	2.6	12
151	Glass formation, thermal properties, and elastic constants of La–Al–Co alloys. Journal of Materials Research, 2010, 25, 1398-1404.	1.2	12
152	Enhanced glass-forming ability of a Sm-based alloy with the addition of La. Journal of Alloys and Compounds, 2010, 505, 497-500.	2.8	12
153	The relationship between t-ZrO2 stability and the crystallization of a Zr-based bulk metallic glass during oxidation. Intermetallics, 2012, 31, 21-25.	1.8	12
154	Hierarchical ultrafine-grained/nanocystalline Al-based bulk alloy with high strength and large plasticity. Intermetallics, 2012, 23, 199-203.	1.8	12
155	The influence of Ag substitution for Cu on glass-forming ability and thermal properties of Mg-based bulk metallic glasses. Journal of Non-Crystalline Solids, 2012, 358, 1425-1429.	1.5	12
156	Compositional dependence of microstructure and tribological properties of plasma sprayed Fe-based metallic glass coatings. Science China Technological Sciences, 2012, 55, 1335-1342.	2.0	12
157	High-zirconium bulk metallic glasses with high strength and large ductility. Science China: Physics, Mechanics and Astronomy, 2013, 56, 540-544.	2.0	12
158	Effect of Minor Au Addition on Glass-Forming Ability and Mechanical Properties of Pd–Cu–Au–Si–P Alloys. Materials Transactions, 2005, 46, 2945-2948.	0.4	11
159	Formation and biocorrosion behavior of Zr-Al-Co-Nb bulk metallic glasses. Science Bulletin, 2012, 57, 1723-1727.	1.7	11
160	Size-dependent enhancement of plasticity by laser surface melting in Zr 55 Al 10 Ni 5 Cu 30 bulk metallic glass. Journal of Alloys and Compounds, 2016, 658, 49-54.	2.8	11
161	Balancing benefits of strength, plasticity and glass-forming ability in Co-based metallic glasses. Journal of Materials Science and Technology, 2021, 86, 110-116.	5.6	11
162	A Bulk Glassy Cu–Zr–Ti–Sn Alloy with Superior Plasticity. Materials Transactions, 2005, 46, 2545-2547.	0.4	9

#	Article	IF	CITATIONS
163	Investigation of viscosity and crystallization in supercooled-liquid region of Zr-based glassy alloys. Journal of Non-Crystalline Solids, 2012, 358, 150-154.	1.5	9
164	Macrophage responses to a Zrâ€based bulk metallic glass. Journal of Biomedical Materials Research - Part A, 2014, 102, 3369-3378.	2.1	9
165	Honeycomb-like porous metallic glasses decorated by Cu nanoparticles formed by one-pot electrochemically galvanostatic etching. Materials and Design, 2020, 196, 109109.	3.3	9
166	Triggering of Apoptosis in Osteosarcoma 143B Cell Line by Carbon Quantum Dots via the Mitochondrial Apoptotic Signal Pathway. BioMed Research International, 2020, 2020, 1-12.	0.9	9
167	Formation and properties of biocompatible Ti-based bulk metallic glasses in the Ti–Cu–Zr–Fe–Sn–Si–Ag system. Journal of Non-Crystalline Solids, 2021, 571, 121060.	1.5	9
168	The atomic structure, magnetic properties and bending ductility of a novel Fe-P-C-B-Si amorphous alloy investigated by experiments and ab initio molecular dynamics. Journal of Alloys and Compounds, 2022, 904, 164101.	2.8	9
169	Ti–Zr–Hf–Nb–Ta–Sn high-entropy alloys with good properties as potential biomaterials. Rare Metals, 2022, 41, 2305-2315.	3.6	9
170	Effect of continuous rapid annealing on the microstructure and properties of Fe85P11C2B2 amorphous alloy. Materials Letters, 2022, 315, 131984.	1.3	9
171	Formation and thermal stability of Cu-Zr-Al-Er bulk metallic glasses with high glass-forming ability. International Journal of Minerals, Metallurgy, and Materials, 2007, 14, 36-38.	0.2	8
172	Synthesis of impurity-insensitive Zr-based bulk metallic glass. Journal of Non-Crystalline Solids, 2016, 439, 1-5.	1.5	8
173	Microstructure and Mechanical Properties of Al _{25 Ⱂ<i> x</i>} Cr _{25 + 0.5<i>x</i>} Fe ₂₅ Ni _{25â€% (<i>x</i> = 19, 17, 15 at%) Multiâ€Component Alloys. Advanced Engineering Materials, 2018, 20, 1701}		.5∢i>x
174	Fabrication of hierarchical porous metallic glasses decorated with Cu nanoparticles as integrated electrodes for high-performance non-enzymatic glucose sensing. Scripta Materialia, 2021, 199, 113884.	2.6	8
175	The similarity of elements in multi-principle element alloys based on a new criterion for phase constitution. Materials and Design, 2021, 207, 109849.	3.3	8
176	β duplex phase Ti–Zr–Nb–Ag alloys with impressive mechanical properties, excellent antibacterial and good biocompatibility. Journal of Materials Research and Technology, 2022, 19, 5008-5016.	2.6	8
177	Magnetic softening of the Fe83Si3B11P2Cu1 amorphous/nanocrystalline alloys with large-size pre-existing α-Fe grains by high heating-rate annealing. Journal of Materials Research and Technology, 2022, 20, 161-168.	2.6	8
178	Ce-Rich Misch Metal-Based Bulk Metallic Glasses with High Glass-Forming Ability. Materials Transactions, 2005, 46, 2291-2294.	0.4	7
179	Air Oxidation Kinetics Study of Zr ₅₈ Nb ₃ Cu ₁₆ Ni ₁₃ Al ₁₀ Bulk Metallic Glass. Defect and Diffusion Forum, 2009, 283-286, 209-213.	0.4	7
180	Studies on the formability of Al-based metallic glasses/nanocomposites based on isochronal DSC analysis. Journal of Non-Crystalline Solids, 2010, 356, 2258-2262.	1.5	7

#	Article	IF	CITATIONS
181	Glass formation, magnetic properties and magnetocaloric effect of ternary Ho–Al–Co bulk metallic glass. Journal of Magnetism and Magnetic Materials, 2012, 324, 4064-4067.	1.0	7
182	Correlation of glass-forming ability to thermal properties in Ti-based bulk metallic glasses. Journal of Alloys and Compounds, 2013, 546, 7-13.	2.8	7
183	Synthesis of CoCrMoCB bulk metallic glasses with high strength and good plasticity via regulating the metalloid content. Journal of Non-Crystalline Solids, 2015, 410, 155-159.	1.5	7
184	Surface vitrification of alloys by pulsed electrical discharge treatment. Journal of Alloys and Compounds, 2017, 707, 148-154.	2.8	7
185	Enhanced Wear Resistance of Zr-Based Bulk Metallic Glass by Thermal Oxidation Treatment. Materials Transactions, 2017, 58, 520-523.	0.4	7
186	Local atomic structure of Co B-based glassy alloys: Ab initio molecular dynamics simulations. Journal of Non-Crystalline Solids, 2018, 483, 118-125.	1.5	7
187	FeSiBPNbCu Bulk Nanocrystalline Alloys with High GFA and Excellent Soft-Magnetic Properties. Metals, 2019, 9, 219.	1.0	7
188	Microstructure and mechanical properties of a spray-formed Ti-based metallic glass former alloy. Journal of Alloys and Compounds, 2012, 512, 241-245.	2.8	6
189	Formation and mechanical properties of La–Al(–Ga)–C bulk metallic glasses with high content of carbon. Journal of Non-Crystalline Solids, 2014, 403, 18-22.	1.5	6
190	Hard rhenium–boron–cobalt amorphous alloys with a wide supercooled liquid region. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 645, 122-125.	2.6	6
191	Fabrication of highly ordered nanotube layer on Zr-based bulk metallic glass for biomedical uses. Materials Letters, 2017, 200, 63-66.	1.3	6
192	Influence of laser surface melting treatment on the surface composition and mechanical properties of a Zr65Al7.5Ni10Cu12.5Ag5 bulk metallic glass. Journal of Non-Crystalline Solids, 2018, 488, 63-68.	1.5	6
193	Atomic Structure and Magnetic Properties of the Fe78B13Si9 Amorphous Alloy Surface. Journal of Physical Chemistry C, 2018, 122, 28613-28618.	1.5	6
194	EFFECT OF COEXISTENCE OF SIMILAR ELEMENTS La AND Ce ON FORMATION OF (La-Ce)-Al-Cu BULK METALLIC GLASSES. International Journal of Modern Physics B, 2009, 23, 1235-1240.	1.0	5
195	Real time synchrotron radiation studies on metallic glass (Zr0.55Al0.1Ni0.05Cu0.3)99Y1 after cold rolling. Intermetallics, 2009, 17, 231-234.	1.8	5
196	Initial Oxidation Behavior of Zr ₅₅ Cu ₃₀ Al ₁₀ Ni ₅ Bulk Metallic Glass in Short-Term Stage. Materials Science Forum, 0, 675-677, 209-212.	0.3	5
197	Tailoring residual stress to achieve large plasticity in Zr55Al10Ni5Cu30 bulk metallic glass. Journal of Alloys and Compounds, 2017, 690, 176-181.	2.8	5
198	Development of Co-Based Amorphous Composite Coatings Synthesized by Laser Cladding for Neutron Shielding. Materials, 2021, 14, 279.	1.3	5

#	Article	IF	CITATIONS
199	Formation and Mechanical Properties of Bulk Glassy (Cu _{0.55} Zr _{0.40} Al _{0.05}) ₉₉ RE ₁ (RE=Y, Pr,)	Ţj @∄ Qq1∶	l @. 784314
200	Formation and mechanical properties of Zr-based bulk metallic glass composites with high oxygen levels. Science Bulletin, 2012, 57, 3931-3936.	1.7	4
201	Ab initio molecular dynamics simulation of the surface composition of Co 54 Ta 11 B 35 metallic glasses. Journal of Non-Crystalline Solids, 2015, 425, 199-206.	1.5	4
202	Crystallization kinetics of a high-zirconium-based glassy alloy: A DSC study. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 191-196.	0.4	4
203	Crystallization and corrosion resistance of Zr–Ti–Y–Al–Cu–Ni–Co–Fe complex multi-component b metallic glasses. Intermetallics, 2020, 118, 106688.	ulk 1.8	4
204	Formation of bulk Pt–Pd–Ni–P glassy alloys. Journal of Non-Crystalline Solids, 2006, 352, 3103-3108.	1.5	3
205	Investigation on structure and dynamic property of liquid Pd-Cu-Ni-P alloys using ab initio molecular dynamics simulation. Science China Technological Sciences, 2013, 56, 376-386.	2.0	3
206	Local structure of Co55Ta10B35 amorphous alloy investigated by ab-initio molecular dynamics. Science China: Physics, Mechanics and Astronomy, 2013, 56, 904-909.	2.0	3
207	Effects of the laser surface treatment on the mechanical properties of CuZr-based bulk metallic glasses. Science China: Physics, Mechanics and Astronomy, 2013, 56, 925-927.	2.0	3
208	Amorphization of Ni61 Nb39 Alloy by Laser Surface Treatment. Journal of Iron and Steel Research International, 2016, 23, 37-41.	1.4	3
209	Correlation between local structure and glass forming ability enhanced by similar element substitution in (La-Ce)-Co-Al bulk metallic glasses. Journal of Applied Physics, 2017, 122, 085103.	1.1	3
210	Fabrication of fine spongy nanoporous Ag-Au alloys with improved catalysis properties. Progress in Natural Science: Materials International, 2017, 27, 658-663.	1.8	3
211	Effect of similar element Nb and Ti substitution for Zr in Fe70(ZrNbTi)10B20 bulk metallic glasses. Journal of Non-Crystalline Solids, 2020, 529, 119765.	1.5	3
212	Effect of annealing on crystallization behavior in Cu15Zr85 amorphous film. Journal of Alloys and Compounds, 2021, 883, 160913.	2.8	3
213	Tailoring metalloid elements in Fe-C-P-B amorphous/nanocrystalline alloys with high saturated magnetization and heat-treatable bending ductility. Journal of Non-Crystalline Solids, 2022, 584, 121515.	1.5	3
214	Correlation between supercooled liquid region and crystallization behavior with alloy composition of La-Al-Cu metallic glasses. Science China: Physics, Mechanics and Astronomy, 2011, 54, 1608-1611.	2.0	2
215	The 1.85 GPa AlSc Bulk Alloy with Abundant Nanoscale Growth Twins. Chinese Physics Letters, 2015, 32, 076401.	1.3	2
216	Microalloying-induced large plasticity in La-Al-C bulk metallic glass. Journal of Non-Crystalline Solids, 2016, 447, 55-58.	1.5	2

#	Article	IF	CITATIONS
217	Formation and mechanical properties of Zr-Nb-Cu-Ni-Al-Lu bulk glassy alloys with superior glass-forming ability. Journal Wuhan University of Technology, Materials Science Edition, 2016, 31, 186-190.	0.4	2
218	Tailoring Nano-crystallization in Zr50Ti4Y1Al10Cu25Ni7Co2Fe1 complex multicomponent bulk metallic glass by O doping. Journal of Non-Crystalline Solids, 2021, 553, 120474.	1.5	2
219	Ti-Cu-Zr-Fe-Sn-Si-Ag-Pd Bulk Metallic Glasses with Potential for Biomedical Applications. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1559-1567.	1.1	2
220	General route to fabricate ultrafine metallic glass powders directly from their own crystalline states by localized pulsed electrical discharge atomization. Intermetallics, 2021, 136, 107267.	1.8	2
221	Ductile Fe-based amorphous alloys with high iron content. International Journal of Minerals, Metallurgy and Materials, 2010, 17, 199-203.	2.4	1
222	Ti–Cu–Zr–Fe–Nb ultrafine structure-dendrite composites with good mechanical properties and biocompatibility. Progress in Natural Science: Materials International, 2013, 23, 557-561.	1.8	1
223	Induced Plasticity of a Brittle (La, Ce)-Based Bulk Metallic Glass by Surface Corrosion. Acta Metallurgica Sinica (English Letters), 2016, 29, 129-133.	1.5	1
224	A complex multicomponent bulk metallic glass/ultrafine-nanocrystal composite fabricated under industrial-applicable condition. Journal of Non-Crystalline Solids, 2020, 530, 119827.	1.5	1
225	Atomic structure of <scp>Co_{92â^'<i>x</i>}B_{<i>x</i>}Ta₈</scp> glassy alloys studied by ab initio molecular dynamics simulations. International Journal of Quantum Chemistry, 2020, 120, e26406.	1.0	1
226	FORMATION OF La - Al - Ni - Cu - Fe BULK METALLIC GLASSES WITH HIGH GLASS-FORMING ABILITY. International Journal of Modern Physics B, 2010, 24, 2314-2319.	1.0	0
227	Direct drive friction welding of a multi-phase Al ₁₃ Cr _{23.5} Fe ₂₀ Co ₂₀ Ni _{23.5} high-entropy	1.5	Ο