
Colin D Bain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6970283/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sum-frequency vibrational spectroscopy of the solid/liquid interface. Journal of the Chemical Society, Faraday Transactions, 1995, 91, 1281.	1.7	555
2	Adsorption of CTAB on Hydrophilic Silica Studied by Linear and Nonlinear Optical Spectroscopy. Journal of the American Chemical Society, 2008, 130, 17434-17445.	6.6	223
3	Quantitative analysis of monolayer composition by sum-frequency vibrational spectroscopy. Langmuir, 1991, 7, 1563-1566.	1.6	213
4	Rapid motion of liquid drops. Nature, 1994, 372, 414-415.	13.7	173
5	Sum-Frequency Spectroscopy of Surfactants Adsorbed at a Flat Hydrophobic Surface. The Journal of Physical Chemistry, 1994, 98, 8536-8542.	2.9	145
6	Sum-frequency vibrational spectroscopy of soluble surfactants at the air/water interface. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 515.	1.7	138
7	A Study of Nonionic Surfactants at the Airâ^'Water Interface by Sum-Frequency Spectroscopy and Ellipsometry. Langmuir, 1999, 15, 1400-1409.	1.6	104
8	Raman spectra of planar supported lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2005, 1711, 59-71.	1.4	94
9	Sum-Frequency Spectroscopy of Surfactant Monolayers at the Oilâ^'Water Interface. Journal of Physical Chemistry B, 2003, 107, 10801-10814.	1.2	90
10	A general ink formulation of 2D crystals for wafer-scale inkjet printing. Science Advances, 2020, 6, eaba5029.	4.7	89
11	Array Formation in Evanescent Waves. ChemPhysChem, 2006, 7, 329-332.	1.0	86
12	Low-Density Self-Assembled Monolayers on Gold Derived from Chelating 2-Monoalkylpropane-1,3-dithiols. Langmuir, 2000, 16, 541-548.	1.6	79
13	Control of the Particle Distribution in Inkjet Printing through an Evaporation-Driven Sol–Gel Transition. ACS Applied Materials & Interfaces, 2014, 6, 9572-9583.	4.0	71
14	Measurement of the Dynamic Surface Excess in an Overflowing Cylinder by Neutron Reflection. Langmuir, 1998, 14, 990-996.	1.6	70
15	Surfactant-Induced Surface Freezing at the Alkane-Water Interface. Physical Review Letters, 2004, 92, 176103.	2.9	69
16	Effect of Chain Length on the Structure of Monolayers of Alkyltrimethylammonium Bromides (CnTABs) at the Airâ^'Water Interface. Journal of Physical Chemistry B, 1998, 102, 218-222.	1.2	63
17	Total internal reflection spectroscopy for studying soft matter. Soft Matter, 2014, 10, 1071.	1.2	60
18	Total internal reflection Raman spectroscopy. Analyst, The, 2012, 137, 35-48.	1.7	57

COLIN D BAIN

#	Article	IF	CITATIONS
19	Phase transitions in monolayers of medium-chain alcohols on water studied by sum-frequency spectroscopy and ellipsometry. Faraday Discussions, 1996, 104, 209.	1.6	56
20	Phase Transitions in Mixed Monolayers of Cationic Surfactants and Dodecanol at the Air/Water Interface. Journal of Physical Chemistry B, 1999, 103, 4678-4686.	1.2	52
21	Total Internal Reflection Sum-Frequency Spectroscopy:Â A Strategy for Studying Molecular Adsorption on Metal Surfaces. Langmuir, 2000, 16, 2343-2350.	1.6	51
22	Phase Transitions in Mixed Monolayers of Sodium Dodecyl Sulfate and Dodecanol at the Air/Water Interface. Journal of Physical Chemistry B, 1998, 102, 7434-7441.	1.2	50
23	Freezing transitions in mixed surfactant/alkane monolayers at the air–solution interface. Soft Matter, 2006, 2, 66-76.	1.2	46
24	Effects of bulk aggregation on PEI–SDS monolayers at the dynamic air–liquid interface: depletion due to precipitation versus enrichment by a convection/spreading mechanism. Soft Matter, 2013, 9, 6103.	1.2	46
25	A comparative study of confined organic monolayers by Raman scattering and sum-frequency spectroscopy. Vibrational Spectroscopy, 2000, 24, 109-123.	1.2	45
26	First-Order Phase Transition in Mixed Monolayers of Hexadecyltrimethylammonium Bromide and Tetradecane at the Airâ^Water Interface. Langmuir, 2000, 16, 5853-5855.	1.6	41
27	Optical sculpture: controlled deformation of emulsion droplets with ultralow interfacial tensions using optical tweezers. Chemical Communications, 2006, , 4515.	2.2	41
28	Behavior of silk protein at the air–water interface. Soft Matter, 2012, 8, 9705.	1.2	35
29	Printing Small Dots from Large Drops. ACS Applied Materials & amp; Interfaces, 2015, 7, 3782-3790.	4.0	34
30	Electroanalysis of Ascorbic Acid: A Comparative Study of Laser Ablation Voltammetry and Sonovoltammetry. Electroanalysis, 1998, 10, 613-620.	1.5	33
31	Determination of dynamic surface tension and viscosity of non-Newtonian fluids from drop oscillations. Physics of Fluids, 2014, 26, .	1.6	33
32	Determination of the Optical Properties of Monolayers on Water. Langmuir, 1997, 13, 5465-5469.	1.6	32
33	Interfacial Films and Wetting Behavior of Hexadecane on Aqueous Solutions of Dodecyltrimethylammonium Bromide. Langmuir, 2003, 19, 2249-2253.	1.6	32
34	Surfactant Adsorption Kinetics by Total Internal Reflection Raman Spectroscopy. 2. CTAB and Triton X-100 Mixtures on Silica. Journal of Physical Chemistry B, 2011, 115, 7353-7363.	1.2	32
35	Sum-Frequency Spectroscopy of a Monolayer of Zinc Arachidate at the Solidâ^'Solid Interface. Journal of Physical Chemistry B, 2006, 110, 2278-2292.	1.2	31
36	Wetting in oil/water/surfactant systems. Current Opinion in Colloid and Interface Science, 2012, 17, 196-204.	3.4	31

COLIN D BAIN

#	Article	IF	CITATIONS
37	In Situ Vibrational Spectroscopy of an Organic Monolayer at the Sapphireâ^'Quartz Interface. Journal of the American Chemical Society, 1998, 120, 203-204.	6.6	29
38	Surfactant Adsorption Kinetics by Total Internal Reflection Raman Spectroscopy. 1. Pure Surfactants on Silica. Journal of Physical Chemistry B, 2011, 115, 7341-7352.	1.2	29
39	Adsorption Kinetics in Binary Surfactant Mixtures Studied with External Reflection FTIR Spectroscopyâ€. Journal of Physical Chemistry C, 2007, 111, 8757-8774.	1.5	27
40	Evaporation of Binary-Mixture Liquid Droplets: The Formation of Picoliter Pancakelike Shapes. Physical Review Letters, 2021, 127, 024501.	2.9	27
41	A new class of self-assembled monolayers: Organic thiols on gallium arsenide. Advanced Materials, 1992, 4, 591-594.	11.1	26
42	Microfluidic generation of monodisperse ultra-low interfacial tension oil droplets in water. RSC Advances, 2015, 5, 8114-8121.	1.7	26
43	Combining Inkjet Printing with Emulsion Solvent Evaporation to Pattern Polymeric Particles. ACS Applied Materials & Interfaces, 2018, 10, 12317-12322.	4.0	25
44	In Situ Fabrication of Polymeric Microcapsules by Ink-Jet Printing of Emulsions. ACS Applied Materials & Interfaces, 2019, 11, 40652-40661.	4.0	24
45	Drying of Ethanol/Water Droplets Containing Silica Nanoparticles. ACS Applied Materials & Interfaces, 2019, 11, 14275-14285.	4.0	24
46	Wetting and Freezing of Hexadecane on an Aqueous Surfactant Solution: Triple Point in a 2-D film. Journal of Physical Chemistry B, 2008, 112, 11664-11668.	1.2	23
47	The overflowing cylinder sixty years on. Advances in Colloid and Interface Science, 2008, 144, 4-12.	7.0	22
48	Total internal reflection (TIR) Raman tribometer: a new tool for in situ study of friction-induced material transfer. RSC Advances, 2013, 3, 5401.	1.7	22
49	Ellipsometric study of the displacement of milk proteins from the oil–water interface by the non-ionic surfactant C10E8. Physical Chemistry Chemical Physics, 2010, 12, 4590.	1.3	21
50	Surfactant adsorption by total internal reflection Raman spectroscopy. Part III: Adsorption onto cellulose. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2011, 391, 10-18.	2.3	21
51	Adsorption kinetics of ammonium perfluorononanoate at the air–water interface. Physical Chemistry Chemical Physics, 2004, 6, 5061-5065.	1.3	20
52	Effect of Surface Freezing on Stability of Oil-in-Water Emulsions. Langmuir, 2018, 34, 6205-6209.	1.6	19
53	Ellipsometric study of depletion at oil-water interfaces. Physical Review E, 2007, 76, 041601.	0.8	18
54	Raman Scattering from Confined Liquid Films in the Sub-Nanometre Regime. Tribology Letters, 2007, 27, 159-167.	1.2	18

COLIN D BAIN

#	Article	lF	CITATIONS
55	Ink-Jet Printing of High-Molecular-Weight Polymers in Oil-in-Water Emulsions. ACS Applied Materials & Interfaces, 2017, 9, 22918-22926.	4.0	18
56	Prospects for detecting metal–adsorbate vibrations by sumâ€frequency spectroscopy. Catalysis Letters, 1999, 61, 7-13.	1.4	17
57	A simple and rapid method for the determination of the surface equations of state and adsorption isotherms for efficient surfactants. Physical Chemistry Chemical Physics, 2003, 5, 4885.	1.3	17
58	Drop-on-demand satellite-free drop formation for precision fluid delivery. Chemical Engineering Science, 2018, 186, 102-115.	1.9	17
59	Fabrication of monolayers of uniform polymeric particles by inkjet printing of monodisperse emulsions produced by microfluidics. Lab on A Chip, 2019, 19, 3077-3085.	3.1	16
60	Total internal reflection Raman spectroscopy of poly(alpha-olefin) oils in a lubricated contact. RSC Advances, 2014, 4, 22205-22213.	1.7	14
61	Nanofluidic networks created and controlled by light. Soft Matter, 2011, 7, 2517.	1.2	13
62	Time-resolved phase-sensitive second harmonic generation spectroscopy. Journal of Chemical Physics, 2015, 142, 084201.	1.2	12
63	Mechanical Characterization of Ultralow Interfacial Tension Oil-in-Water Droplets by Thermal Capillary Wave Analysis in a Microfluidic Device. Langmuir, 2016, 32, 3580-3586.	1.6	10
64	Changes in molecular composition and packing during lipidmembrane reconstitution from phospholipid–surfactant micelles. Soft Matter, 2009, 5, 568-575.	1.2	9
65	Morphological Transformations in Solid Domains of Alkanes on Surfactant Solutions. Journal of Physical Chemistry Letters, 2013, 4, 844-848.	2.1	8
66	Penetration of surfactant solutions into hydrophobic capillaries. Physical Chemistry Chemical Physics, 2005, 7, 3048.	1.3	7
67	Wetting and Drying of Aqueous Droplets Containing Nonionic Surfactants C _{<i>n</i>} E _{<i>m</i>} . Langmuir, 2021, 37, 4091-4101.	1.6	7
68	Evaporation of a thin droplet in a shallow well: theory and experiment. Journal of Fluid Mechanics, 2021, 927, .	1.4	7
69	Compare and contrast polyethylene and DNA. Soft Matter, 2006, 2, 101.	1.2	0
70	Comparative Study of Lipid- and Polymer-Supported Membranes Obtained by Vesicle Fusion. Langmuir, 2022, 38, 5674-5681.	1.6	0