Bunjerd Jongsomjit

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6969174/publications.pdf

Version: 2024-02-01

279798 254184 2,979 179 23 43 citations g-index h-index papers 180 180 180 3055 docs citations citing authors all docs times ranked

#	Article	IF	CITATIONS
1	The role of ruthenium on the acidity of mixed alumina and silica phases and its impact on activity for ethanol dehydration. Canadian Journal of Chemical Engineering, 2022, 100, 559-568.	1.7	3
2	Enhanced stability of Ti-containing silica catalysts for biodiesel epoxidation with hydrogen peroxide: Presence of strong metal–support interactions for alleviating permanent deactivation. Fuel, 2022, 314, 122736.	6.4	5
3	Optimal Conditions for Butanol Production from Ethanol over MgAlO Catalyst Derived from Mg-Al Layer Double Hydroxides. Journal of Oleo Science, 2022, 71, 141-149.	1.4	5
4	Application of activated carbon derived from bacterial cellulose for mesoporous HZSM-5 catalyst synthesis and performances of catalyst in bioethanol dehydration. Biomass and Bioenergy, 2022, 160, 106440.	5.7	2
5	Role of Cr on Cu-Cr catalyst via direct ethanol dehydrogenation to ethyl acetate. Journal of Environmental Chemical Engineering, 2022, 10, 107542.	6.7	8
6	A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur. Chemosphere, 2022, 301, 134579.	8.2	7
7	Photooxidation and Virus Inactivation using TiO2(P25)–SiO2 Coated PET Film. Bulletin of Chemical Reaction Engineering and Catalysis, 2022, 17, 508-519.	1.1	2
8	Differences in Deterioration Behaviors of Cu/ZnO/Al ₂ O ₃ Catalysts with Different Cu Contents toward Hydrogenation of CO and CO ₂ . ACS Omega, 2022, 7, 25783-25797.	3.5	6
9	Observation of reduction on alkane products in butene cracking over ZSM-5 modified with Fe, Cu, and Ni catalysts. Fuel, 2021, 291, 120265.	6.4	13
10	Study of deactivation in mesocellular foam carbon (MCF-C) catalyst used in gas-phase dehydrogenation of ethanol. Scientific Reports, 2021, 11, 11683.	3.3	5
11	Comparative study on the effect of different copper loading on catalytic behaviors and activity of Cu/ZnO/Al2O3 catalysts toward CO and CO2 hydrogenation. Heliyon, 2021, 7, e07682.	3.2	13
12	Development of a New Ternary Al ₂ O ₃ â€"HAPâ€"Pd Catalyst for Diethyl Ether and Ethylene Production Using the Preferential Dehydration of Ethanol. ACS Omega, 2021, 6, 19911-19923.	3.5	11
13	Solution-mediated transformation of natural zeolite to ANA and CAN topological structures with altered active sites for ethanol conversion. Advanced Powder Technology, 2021, 32, 4155-4166.	4.1	4
14	Elucidation of Pd modification effect on catalytic behaviors of \hat{I}^3 -Al2O3-P catalysts toward ethanol dehydration and dehydrogenation. Catalysis Communications, 2021, 148, 106169.	3.3	16
15	Improved Br $ ilde{A}$, nsted to Lewis (B/L) Ratio of Co- and Mo-Impregnated ZSM-5 Catalysts for Palm Oil Conversion to Hydrocarbon-Rich Biofuels. Catalysts, 2021, 11, 1286.	3.5	4
16	Incorporation of diethyl ether production to existing bioethanol process: Techno-economic analysis. Journal of Cleaner Production, 2021, 327, 129438.	9.3	4
17	Rice Husk-Derived Silica as a Support for Zirconocene/MMAO Catalyst in Ethylene Polymerization. Waste and Biomass Valorization, 2020, 11, 769-779.	3.4	6
18	Hydrogen activated WOx-supported catalysts for Lewis acid transformation to Bronsted acid observed by in situ DRIFTS of adsorbed ammonia: Effect of different supports on the Lewis acid transformation. Catalysis Today, 2020, 358, 370-386.	4.4	12

#	Article	IF	Citations
19	Synthesis of mesoporous MFI zeolite via bacterial cellulose-derived carbon templating for fast adsorption of formaldehyde. Journal of Hazardous Materials, 2020, 384, 121161.	12.4	33
20	Influence of acidity on the performance of silica supported tungsten oxide catalysts assessed by in situ and Operando DRIFTS. Catalysis Today, 2020, 358, 345-353.	4.4	5
21	Inhibition effect of Na+ form in ZSM-5 zeolite on hydrogen transfer reaction via 1-butene cracking. Catalysis Today, 2020, 358, 237-245.	4.4	27
22	Effect of different phase composition in titania on catalytic behaviors of AgLi/TiO2 catalysts via ethanol dehydrogenation. Journal of Environmental Chemical Engineering, 2020, 8, 103547.	6.7	10
23	Lithium promotion in ethanol oxidative dehydrogenation over Al- modified Ag/Montmorillonite clays. Molecular Catalysis, 2020, 483, 110717.	2.0	5
24	Interconnected Micro, Meso, and Macro Porous Activated Carbon from Bacterial Nanocellulose for Superior Adsorption Properties and Effective Catalytic Performance. Molecules, 2020, 25, 4063.	3.8	15
25	Influence of surface Sn species and hydrogen interactions on the OH group formation over spherical silica-supported tin oxide catalysts. Reaction Chemistry and Engineering, 2020, 5, 1814-1823.	3.7	4
26	Role of Al in Na-ZSM-5 zeolite structure on catalyst stability in butene cracking reaction. Scientific Reports, 2020, 10, 13643.	3.3	20
27	Pd Modification and Supporting Effects on Catalytic Dehydration of Ethanol to Ethylene and Diethyl Ether over W/TiO ₂ Catalysts. Journal of Oleo Science, 2020, 69, 503-515.	1.4	4
28	Temperature and ethanol concentration effects on catalytic ethanol dehydration behaviors over alumina-spherical silica particle composite catalysts. Catalysis Communications, 2020, 145, 106102.	3.3	11
29	Active Site Formation in WO _{<i>x</i>} Supported on Spherical Silica Catalysts for Lewis Acid Transformation to BrÃ,nsted Acid Activity. Journal of Physical Chemistry C, 2020, 124, 15935-15943.	3.1	10
30	Synthesis, characteristics and application of mesocellular foam carbon (MCF-C) as catalyst for dehydrogenation of ethanol to acetaldehyde. Journal of Environmental Chemical Engineering, 2020, 8, 103752.	6.7	20
31	Temperature effect on propylene polymerization behavior over Ziegler-Natta catalyst with different cocatalyst systems. Materials Research Express, 2020, 7, 025309.	1.6	7
32	Tuning of catalytic behaviors in ethanol dehydration with oxygen cofeeding over Pd-HBZ catalyst for ethylene production at low temperature. Catalysis Communications, 2020, 137, 105941.	3.3	10
33	Oxidative dehydrogenation of ethanol over Cu/Mg-Al catalyst derived from hydrotalcite: effect of ethanol concentration and reduction conditions. Journal of Zhejiang University: Science A, 2020, 21, 218-228.	2.4	4
34	Facile Investigation of Ti3+ State in Ti-based Ziegler-Natta Catalyst with A Combination of Cocatalysts Using Electron Spin Resonance (ESR). Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 55-65.	1.1	8
35	Catalytic Dehydration of Ethanol over W/TiO2 Catalysts Having Different Phases of Titania Support. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 96-103.	1.1	3
36	Effect of Immobilization Methods on the Production of Polyethylene-cellulose Biocomposites via Ethylene Polymerization with Metallocene/MAO Catalyst. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 752-764.	1.1	0

#	Article	IF	CITATIONS
37	Production of Acetaldehyde via Oxidative Dehydrogenation of Ethanol over AgLi/SiO2 Catalysts. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 714-725.	1.1	2
38	Activated carbon derived from bacterial cellulose and its use as catalyst support for ethanol conversion to ethylene. Catalysis Communications, 2019, 129, 105750.	3.3	13
39	Oxidative Dehydrogenation of Ethanol over Vanadium- and Molybdenum-modified Mg-Al Mixed Oxide Derived from Hydrotalcite. Journal of Oleo Science, 2019, 68, 679-687.	1.4	6
40	Fuel oil generated from the cogon grass-derived Al–Si (Imperata cylindrica (L.) Beauv) catalysed pyrolysis of waste plastics. Heliyon, 2019, 5, e02324.	3.2	13
41	Dehydrogenation of Ethanol to Acetaldehyde over Different Metals Supported on Carbon Catalysts. Catalysts, 2019, 9, 66.	3.5	45
42	Enhanced Levulinic Acid Production from Cellulose by Combined Brønsted Hydrothermal Carbon and Lewis Acid Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 2697-2703.	3.7	30
43	Ethanol Dehydration over WO3/TiO2Catalysts Using Titania Derived from Sol-Gel and Solvothermal Methods. International Journal of Chemical Engineering, 2019, 2019, 1-11.	2.4	13
44	Carbon-Based Catalyst from Pyrolysis of Waste Tire for Catalytic Ethanol Dehydration to Ethylene and Diethyl Ether. International Journal of Chemical Engineering, 2019, 2019, 1-10.	2.4	11
45	A computational-experimental investigation on high ethylene selectivity in ethanol dehydration reaction found on WOx/ZrO2-activated carbon bi-support systems. Scientific Reports, 2019, 9, 19738.	3.3	8
46	Catalytic dehydration of ethanol to ethylene and diethyl ether over alumina catalysts containing different phases with boron modification. Journal of Porous Materials, 2019, 26, 599-610.	2.6	21
47	Effect of Calcination Temperature on Mg-Al Layered Double Hydroxides (LDH) as Promising Catalysts in Oxidative Dehydrogenation of Ethanol to Acetaldehyde. Journal of Oleo Science, 2019, 68, 95-102.	1.4	21
48	Activated carbon from bacterial cellulose as an effective adsorbent for removing dye from aqueous solution. Separation Science and Technology, 2019, 54, 2180-2193.	2.5	22
49	Dehydrogenation of Ethanol to Acetaldehyde over Co/C Catalysts. Engineering Journal, 2019, 23, 1-13.	1.0	8
50	Influence of Phosphoric Acid Modification on Catalytic Properties of \hat{I}^3 - \hat{I}^{\ddagger} Al2O3 Catalysts for Dehydration of Ethanol to Diethyl Ether. Bulletin of Chemical Reaction Engineering and Catalysis, 2019, 14, 1.	1.1	13
51	Ethanol Dehydrogenation to Acetaldehyde over Activated Carbons-Derived from Coffee Residue. Bulletin of Chemical Reaction Engineering and Catalysis, 2019, 14, 268.	1.1	9
52	Polyethylene/Bacterial-Cellulose Biocomposite Synthesized via In Situ Polymerization with Zirconocene/MMAO Catalyst. Engineering Journal, 2019, 23, 15-28.	1.0	1
53	Observation of Increased Dispersion of Pt and Mobility of Oxygen in Pt/g-Al2O3 Catalyst with La Modification in CO Oxidation. Bulletin of Chemical Reaction Engineering and Catalysis, 2019, 14, 579-585.	1.1	0
54	Influence of Hydrogen on Catalytic Properties of Zieglerâ€Natta Catalysts Prepared by Different Methods in Ethylene Polymerization. Advances in Polymer Technology, 2018, 37, 1035-1040.	1.7	5

#	Article	IF	CITATIONS
55	Hydrogen effects in TiCl4/MgCl2/THF catalysts with second Lewis acid addition on ethylene polymerization behaviors. Polymer Bulletin, 2018, 75, 3211-3226.	3.3	O
56	Characterization of Different Si- and Al-based Catalysts with Pd Modification and Their Use for Catalytic Dehydration of Ethanol. Journal of Oleo Science, 2018, 67, 1005-1014.	1.4	4
57	Oxidative and non-oxidative dehydrogenation of ethanol to acetaldehyde over different VOx/SBA-15 catalysts. Journal of Environmental Chemical Engineering, 2018, 6, 6516-6529.	6.7	24
58	Production of Ethylene through Ethanol Dehydration on SBA-15 Catalysts Synthesized by Sol-gel and One-step Hydrothermal Methods. Journal of Oleo Science, 2018, 67, 235-243.	1.4	11
59	Asymmetrical coexistence of associatively and dissociatively adsorbed alcohol species over α-Fe2O3 iron oxide nanoparticles. Surface Science, 2018, 677, 203-212.	1.9	4
60	Synthesis of Mesoporous TiO2 with a Template Free One Step Reaction of Acid-Catalyzed TiC. Engineering Journal, 2018, 22, 11-24.	1.0	3
61	Impact of AlCl3 and FeCl2 Addition on Catalytic Behaviors of TiCl4/MgCl2/THF Catalysts for Ethylene Polymerization and Ethylene/1-Hexene Copolymerization. Bulletin of Chemical Reaction Engineering and Catalysis, 2018, 13, 393.	1.1	4
62	Differences in characteristics of Zr/SBA-15 and bimetallic Zr-La/SBA-15 prepared by sol–gel and hydrothermal methods. Journal of Porous Materials, 2017, 24, 1383-1394.	2.6	7
63	Ethylene polymerization over TiSSP composite-supported MAO with bis[N-(3-tert-butylsalicylidene) cycloheptylamine] titanium dichloride complex. Iranian Polymer Journal (English Edition), 2017, 26, 775-784.	2.4	0
64	Effect of HCl Loading and Ethanol Concentration over HCl-Activated Clay Catalysts for Ethanol Dehydration to Ethylene. Journal of Oleo Science, 2017, 66, 1355-1364.	1.4	6
65	Effect of Calcination Temperatures and Mo Modification on Nanocrystalline $(\langle i \rangle^{\hat{j}} \langle i \rangle - \langle i \rangle^{\hat{j}} \langle i \rangle)$ -Al $\langle sub \rangle 2 \langle sub \rangle 0 \langle sub \rangle 3 \langle sub \rangle$ Catalysts for Catalytic Ethanol Dehydration. Journal of Nanomaterials, 2017, 2017, 1-9.	2.7	17
66	Diethyl Ether Production during Catalytic Dehydration of Ethanol over Ru- and Pt- modified H-beta Zeolite Catalysts. Journal of Oleo Science, 2017, 66, 199-207.	1.4	32
67	Catalytic Ethanol Dehydration to Ethylene over Nanocrystalline χ- and γ-Al ₂ 0 ₃ Catalysts. Journal of Oleo Science, 2017, 66, 1029-1039.	1.4	32
68	Improvement of Cobalt Dispersion on Co/SBA-15 and Co/SBA-16 Catalysts by Ultrasound and Vacuum Treatments during Post-Impregnation Step. Engineering Journal, 2017, 21, 17-28.	1.0	9
69	Investigation of Alkoxysilanes in the Presence of Hydrogen with Ziegler-Natta Catalysts in Ethylene Polymerization. Engineering Journal, 2017, 21, 171-180.	1.0	2
70	Characteristics and Catalytic Properties of Ni/Ti-Si Composite Oxide Catalysts via CO2 Hydrogenation. Engineering Journal, 2017, 21, 45-55.	1.0	2
71	Effect of Mo-Doped Mesoporous Al-SSP Catalysts for the Catalytic Dehydration of Ethanol to Ethylene. Journal of Chemistry, 2016, 2016, 1-8.	1.9	11
72	A Comparative Study of AlCl ₃ and FeCl ₂ -Modified TiCl ₄ /MgCl ₂ /THF Catalytic System in the Presence of Hydrogen for Ethylene Polymerization. International Journal of Polymer Science, 2016, 2016, 1-9.	2.7	1

#	Article	IF	CITATIONS
73	Catalytic Ethanol Dehydration over Different Acid-activated Montmorillonite Clays. Journal of Oleo Science, 2016, 65, 347-355.	1.4	19
74	Synthesis of polyethylene/coir dust hybrid filler via in situ polymerization with zirconocene/MAO catalyst for use in natural rubber biocomposites. Iranian Polymer Journal (English Edition), 2016, 25, 841-848.	2.4	7
75	A Comparative Study of Different Al-based Solid Acid Catalysts for Catalytic Dehydration of Ethanol. Engineering Journal, 2016, 20, 63-75.	1.0	14
76	Use of Coir-Filled LLDPE as a Reinforcement for Natural Rubber Composite. Key Engineering Materials, 2015, 659, 522-526.	0.4	1
77	A Comparative Study of Solvothermal and Sol-Gel-Derived Nanocrystalline Alumina Catalysts for Ethanol Dehydration. Journal of Nanomaterials, 2015, 2015, 1-11.	2.7	24
78	Oxidative dehydrogenation of ethanol over AgLi–Al2O3 catalysts containing different phases of alumina. Catalysis Communications, 2015, 70, 49-52.	3.3	17
79	Ethylene/1-Hexene Copolymerization over Different Phases Titania-Supported Zirconocene Catalysts. Engineering Journal, 2015, 19, 55-67.	1.0	0
80	Desorption of Water from Distinct Step Types on a Curved Silver Crystal. Molecules, 2014, 19, 10845-10862.	3.8	19
81	Synergistic effects of the ZnCl2-SiCl4 modified TiCl4/MgCl2/THF catalytic system on ethylene/1-hexene and ethylene/1-octene copolymerizations. Chinese Journal of Polymer Science (English Edition), 2014, 32, 84-91.	3.8	8
82	Observation on different reducing power of cocatalysts on the Ziegler–Natta catalyst containing alkoxide species for ethylene polymerization. Journal of Applied Polymer Science, 2014, 131, .	2.6	5
83	Bis [N-(3-tert-butylsalicylidene) cyclooctylamine] titanium dichloride activated with MAO for ethylene polymerization. European Polymer Journal, 2013, 49, 1753-1759.	5.4	6
84	Copolymerization of ethylene/1-hexene with zirconocene/MAO catalyst supported on spherical zirconia modified with BCl3, SiCl4, and glycerol. Polymer Bulletin, 2013, 70, 1753-1768.	3.3	2
85	Effect of ZnCl ₂ ―and SiCl ₄ â€doped TiCl ₄ /MgCl ₂ /THF catalysts for ethylene polymerization. Journal of Applied Polymer Science, 2013, 130, 1588-1594.	2.6	10
86	Modification effect of spherical zirconia with SiCl4 as a support of methylaluminoxane for heterogeneous single-site catalyst. European Polymer Journal, 2013, 49, 4195-4200.	5.4	0
87	Fluorinated bis(phenoxy-imine)titanium complexes with methylaluminoxane forÂthe synthesis of ultra high molecular weight polyethylene. Polymer, 2013, 54, 3217-3222.	3 . 8	6
88	Effect of nanocrystallite size of TiO2 in Co/TiO2 and Co/TiO2-Ru catalysts on methanation. Korean Journal of Chemical Engineering, 2013, 30, 50-54.	2.7	6
89	TRANSESTERIFICATION OF PALM OIL AT NEAR-CRITICAL CONDITIONS USING SULFONATED CARBON-BASED ACID CATALYST. Chemical Engineering Communications, 2013, 200, 1542-1552.	2.6	8
90	Polyethylene/Clay Nanocomposites Produced by <i>In Situ </i> Polymerization with Zirconocene/MAO Catalyst. Journal of Nanomaterials, 2013, 2013, 1-9.	2.7	24

#	Article	IF	CITATIONS
91	Copolymerization of Ethylene and 1â∈Hexene with <i>Ansa</i> â∈Dimethylsilylene(fluorenyl) (<i>t</i> â∈butylamido)Dimethyltitanium Complexes Activated by Modified Methylaluminoxane. Macromolecular Chemistry and Physics, 2013, 214, 2584-2590.	2.2	2
92	CHARACTERISTICS OF ACTIVATED CARBONS DERIVED FROM DEOILED RICE BRAN RESIDUES. Chemical Engineering Communications, 2013, 200, 1309-1321.	2.6	6
93	Observation of Bimodal LLDPE/TiO2 Nanocomposites Produced by in Situ Polymerization with Zirconocene/MMAO Catalysts via Ga Modification on TiO2 Nanofiller. Engineering Journal, 2013, 17, 33-42.	1.0	1
94	Effect of Ga- and BCl3-modified silica-supported [t-BuNSiMe2(2,7-t-Bu2Flu)]TiMe2/MAO catalyst on ethylene/1-hexene copolymerization. European Polymer Journal, 2012, 48, 1304-1312.	5.4	5
95	Observation on inhibition of Ti3+ reduction by fumed silica addition in Ziegler-Natta catalyst with in situ ESR. Journal of Industrial and Engineering Chemistry, 2012, 18, 1888-1892.	5.8	4
96	CO2 hydrogenation over Co/Al2O3 catalysts prepared via a solid-state reaction of fine gibbsite and cobalt precursors. Reaction Kinetics, Mechanisms and Catalysis, 2012, 107, 179-188.	1.7	35
97	Catalytic performance of ZnO nanoparticle in formation of LLDPE/ZnO nanocomposites. Iranian Polymer Journal (English Edition), 2012, 21, 51-63.	2.4	3
98	LLDPE/TiO2 nanocomposites produced from different crystallite sizes of TiO2 via in situ polymerization. Science Bulletin, 2012, 57, 2177-2184.	1.7	3
99	LLDPE synthesis via SiO2–Ga-supported zirconocene/MMAO catalyst. Journal of Industrial and Engineering Chemistry, 2012, 18, 373-377.	5.8	4
100	A Comparative Study of in situ and ex situ Impregnation for LLDPE/Silica Composites Production. Engineering Journal, 2012, 16, 27-36.	1.0	3
101	Fabrication of Gold Nanoparticles/Polypyrrole/HRP Electrode for Phenol Biosensor by Electropolymerization. Engineering Journal, 2012, 16, 45-52.	1.0	3
102	Effect of Cobalt Precursors on Properties of Co/CoAl2O4 Catalysts Synthesized by Solvothermal Method. Engineering Journal, 2012, 16, 5-14.	1.0	6
103	Zirconia Modification on Nanocrystalline Titania-Supported Cobalt Catalysts for Methanation. Engineering Journal, 2012, 16, 29-38.	1.0	1
104	Copolymerization of Ethylene/1-Olefin with Mesoporous Titania-Supported Zirconocene/MAO Catalyst. Engineering Journal, 2012, 16, 9-16.	1.0	0
105	Observation of Different Catalytic Activity of Various 1-Olefins during Ethylene/1-Olefin Copolymerization with Homogeneous Metallocene Catalysts. Molecules, 2011, 16, 373-383.	3.8	21
106	Behaviors in Ethylene Polymerization of MgCl2-SiO2/TiCl4/THF Ziegler-Natta Catalysts with Differently Treated SiO2. Molecules, 2011, 16, 1323-1335.	3.8	8
107	The Influence of Comonomer on Ethylene/α-Olefin Copolymers Prepared Using [Bis(N-(3-tert) Tj ETQq1 1 0.7843]	14 rgBT /C 3.8	verlock 10
108	The Influence of t-Butyl and Cyclododecyl Substitution on Ethylene/1-Hexene Copolymerization Using Ansa-Fluorenylamidodimethyltitanium Derivatives. Molecules, 2011, 16, 4122-4130.	3.8	2

#	Article	IF	CITATIONS
109	Effect of EtOH/MgCl2 Molar Ratios on the Catalytic Properties of MgCl2-SiO2/TiCl4 Ziegler-Natta Catalyst for Ethylene Polymerization. Molecules, 2011, 16, 8332-8342.	3.8	13
110	Ti-Si composite oxide-supported cobalt catalysts for CO2 hydrogenation. Journal of Natural Gas Chemistry, 2011, 20, 558-564.	1.8	36
111	Synthesis of LLDPE/TiO2 nanocomposites by in situ polymerization with zirconocene/dMMAO catalyst: effect of [Al]/[Zr] ratios and TiO2 phases. Polymer Bulletin, 2011, 66, 479-490.	3.3	13
112	Effect of Ga modification on different pore size silicas in synthesis of LLDPE by copolymerization of ethylene and 1-hexene with [t-BuNSiMe2Flu]TiMe2/MMAO catalyst. Polymer Bulletin, 2011, 66, 1301-1312.	3.3	5
113	Effects of Ti oxidation state on ethylene, 1-hexene comonomer polymerization by MgCl2-supported Ziegler–Natta catalysts. Polymer Bulletin, 2011, 67, 1979-1989.	3.3	19
114	Effect of nanocrystalline χ-Al2O3 structure on the catalytic behavior of Co/Al2O3 in CO hydrogenation. Catalysis Today, 2011, 164, 302-307.	4.4	17
115	Effect of calcination treatment of zirconia on W/ZrO2 catalysts for transesterification. Fuel Processing Technology, 2011, 92, 1537-1542.	7.2	15
116	Influence of flame conditions on the dispersion of Pd on the flame spray-derived Pd/TiO2 nanoparticles. Powder Technology, 2011, 210, 328-331.	4.2	16
117	The Influence of Mixed Activators on Ethylene Polymerization and Ethylene/1-Hexene Copolymerization with Silica-Supported Ziegler-Natta Catalyst. Molecules, 2010, 15, 9323-9339.	3.8	17
118	Isosynthesis via CO hydrogenation over SO4–ZrO2 catalysts. Journal of Industrial and Engineering Chemistry, 2010, 16, 411-418.	5.8	6
119	The Role of Zirconia Surface on Catalytic Activity of Tungstated Zirconia via Two-Phase Esterification of Acetic Acid and 1-Heptanol. Catalysis Letters, 2010, 136, 134-140.	2.6	5
120	Liquid-Phase Selective Hydrogenation of 1-Heptyne over Pd/TiO2 Catalyst Synthesized by One-Step Flame Spray Pyrolysis. Catalysis Letters, 2010, 136, 164-170.	2.6	16
121	Study on Solvent/Alkoxide Molar Ratios on Synthesis Zirconia Nanoparticles for Tungstated Zirconia Catalysts Over Esterification. Catalysis Letters, 2010, 139, 42-49.	2.6	6
122	Solvent effect on synthesis of zirconia support for tungstated zirconia catalysts. Journal of Industrial and Engineering Chemistry, 2010, 16, 327-333.	5.8	8
123	Investigation of different modifiers for nanocrystal zirconia on W/ZrO2 catalysts via esterification. Journal of Industrial and Engineering Chemistry, 2010, 16, 935-940.	5.8	20
124	Transesterification of palm oil and esterification of palm fatty acid in near- and super-critical methanol with SO4–ZrO2 catalysts. Fuel, 2010, 89, 2387-2392.	6.4	60
125	Effect of calcination temperature on characteristics of sulfated zirconia and its application as catalyst for isosynthesis. Fuel Processing Technology, 2010, 91, 121-126.	7.2	30
126	Application of Sulfonated Carbon-Based Catalyst for Reactive Extraction of 1,3-Propanediol from Model Fermentation Mixture. Industrial & Engineering Chemistry Research, 2010, 49, 12352-12357.	3.7	23

#	Article	IF	CITATIONS
127	Investigation of diene addition on ethylene–propylene (EP) copolymerization with a zirconocene catalyst: Effects of diene types and E/P ratios. Journal of Materials Processing Technology, 2009, 209, 520-524.	6.3	4
128	A Study on Characteristics and Catalytic Properties of Co/ZrO2-B Catalysts Towards Methanation. Catalysis Letters, 2009, 128, 119-126.	2.6	12
129	Observation on Different Turnover Number in Two-phase Acid-catalyzed Esterification of Dilute Acetic Acid and 1-Heptanol. Catalysis Letters, 2009, 130, 583-587.	2.6	10
130	A study on isosynthesis via CO hydrogenation over ZrO2–CeO2 mixed oxide catalysts. Catalysis Communications, 2009, 10, 494-501.	3.3	21
131	Influence of calcination treatment on the activity of tungstated zirconia catalysts towards esterification. Catalysis Communications, 2009, 10, 1079-1084.	3.3	19
132	Catalytic behaviors of SiO2-supported various aluminoxanes as coactivator in MgCl2/DEP/TiCl4–TEA catalysts for propylene polymerization. Catalysis Communications, 2009, 10, 1319-1323.	3.3	6
133	Surface defect (Ti3+) controlling in the first step on the anatase TiO2 nanocrystal by using sol–gel technique. Applied Surface Science, 2008, 255, 2759-2766.	6.1	28
134	Effect of Zr-Modified SiO2-Supported Metallocene/MAO Catalyst on Copolymerization of Ethylene/1-Octene. Catalysis Letters, 2008, 121, 266-273.	2.6	9
135	Characterization of Cobalt Dispersed on Various Micro- and Nanoscale Silica and Zirconia Supports. Catalysis Letters, 2008, 124, 376-383.	2.6	6
136	Impact of temperature ramping rate during calcination on characteristics of nano-ZrO2 and its catalytic activity for isosynthesis. Journal of Molecular Catalysis A, 2008, 280, 35-42.	4.8	25
137	Effect of supports and solvents on ethylene polymerization with titanium complex consisting of phenoxy-imine ligands/dMMAO catalytic system. Journal of Molecular Catalysis A, 2008, 294, 1-7.	4.8	11
138	Characterization of cobalt dispersed on the mixed nanoscale alumina and zirconia supports. Journal of Materials Processing Technology, 2008, 206, 352-358.	6.3	12
139	A comparative study on synthesis of LLDPE/TiO2 nanocomposites using different TiO2 by in situ polymerization with zirconocene/dMMAO catalyst. Materials Chemistry and Physics, 2008, 112, 954-961.	4.0	31
140	Study of LLDPE/alumina nanocomposites synthesized by in situ polymerization with zirconocene/d-MMAO catalyst. Catalysis Communications, 2008, 9, 522-528.	3.3	27
141	Impact of bimodal pore MCM-41-supported zirconocene/dMMAO catalyst on copolymerization of ethylene/1-octene. Catalysis Communications, 2008, 9, 789-795.	3.3	20
142	A comparative study of SiO2- and ZrO2-supported zirconocene/MAO catalysts on ethylene/1-olefin copolymerization. Catalysis Communications, 2008, 9, 1426-1431.	3.3	16
143	Copolymerization of ethylene/1-octene via different pore sized silica-based-supported zirconocene/dMMAO catalysts. Catalysis Communications, 2008, 10, 118-122.	3.3	20
144	Synthesis of cobalt on cobalt-aluminate via solvothermal method and its catalytic properties for carbon monoxide hydrogenation. Catalysis Communications, 2008, 10, 232-236.	3.3	15

#	Article	IF	CITATIONS
145	Effects of various poisoning compounds on the activity and stereospecificity of heterogeneous Ziegler–Natta catalyst. Science and Technology of Advanced Materials, 2008, 9, 024402.	6.1	14
146	POISONING OF ACTIVE SITES ON ZIEGLER-NATTA CATALYST FOR PROPYLENE POLYMERIZATION. Chinese Journal of Polymer Science (English Edition), 2008, 26, 547.	3.8	5
147	Investigation of isosynthesis via CO hydrogenation over ZrO2 and CeO2 catalysts: Effects of crystallite size, phase composition and acid–base sites. Catalysis Communications, 2007, 8, 548-556.	3.3	37
148	Effect of surface sites of TiO2 support on the formation of cobalt-support compound in Co/TiO2 catalysts. Catalysis Communications, 2007, 8, 1772-1780.	3.3	9
149	Characteristics and catalytic properties of [t-BuNSiMe2Flu]TiMe2/dMMAO catalyst dispersed on various supports towards ethylene/1-octene copolymerization. Applied Catalysis A: General, 2007, 327, 270-277.	4.3	18
150	Study of cobalt dispersion onto the mixed nano-SiO2–ZrO2 supports and its application as a catalytic phase. Materials Chemistry and Physics, 2007, 105, 14-19.	4.0	22
151	Effect of nanoscale SiO2 and ZrO2 as the fillers on the microstructure of LLDPE nanocomposites synthesized via in situ polymerization with zirconocene. Materials Letters, 2007, 61, 1376-1379.	2.6	44
152	Observation of bimodal polyethylene derived from TiO2-supported zirconocene/MAO catalyst during polymerization of ethylene and ethylene/1-hexene. Catalysis Letters, 2007, 117, 177-181.	2.6	7
153	Impact of Boron Modification on MCM-41-Supported Cobalt Catalysts for Hydrogenation of Carbon Monoxide. Catalysis Letters, 2007, 118, 195-202.	2.6	7
154	Control of Ti3+surface defect on TiO2 nanocrystal using various calcination atmospheres as the first step for surface defect creation and its application in photocatalysis. Applied Surface Science, 2007, 253, 3849-3855.	6.1	140
155	Effect of nano-SiO2 particle size on the formation of LLDPE/SiO2 nanocomposite synthesized via the in situ polymerization with metallocene catalyst. Chemical Engineering Science, 2007, 62, 899-905.	3.8	68
156	Differences in characteristics and catalytic properties of Co catalysts supported on micron- and nano-sized zirconia. Catalysis Communications, 2006, 7, 192-197.	3.3	14
157	Elucidation of solvent effects on the catalytic behaviors for [t-BuNSiMe2Flu]TiMe2 complex during ethylene/1-hexene copolymerization. Catalysis Communications, 2006, 7, 721-727.	3.3	16
158	Elucidation of reduction behaviors for Co/TiO2 catalysts with various rutile/anatase ratios. Studies in Surface Science and Catalysis, 2006, , 285-288.	1.5	0
159	Role of ruthenium in the reduction behavior of ruthenium-promoted cobalt/titania Fischer-Tropsch catalystsÂ. Reaction Kinetics and Catalysis Letters, 2006, 88, 65-71.	0.6	2
160	Effect of Zirconia-modified Titania Consisting of Different Phases on Characteristics and Catalytic Properties of Co/TiO2 Catalysts. Catalysis Letters, 2006, 108, 55-61.	2.6	12
161	The Role of CaO in the Ziegler–Natta Catalyst for Propylene Polymerization. Catalysis Letters, 2006, 109, 147-152.	2.6	5
162	Catalytic behaviors of mixed TiO2-SiO2-supported cobalt Fischer–Tropsch catalysts for carbon monoxide hydrogenation. Materials Chemistry and Physics, 2006, 97, 343-350.	4.0	21

#	Article	IF	Citations
163	Characteristics and catalytic properties of Co/TiO2 for various rutile:anatase ratios. Catalysis Communications, 2005, 6, 705-710.	3.3	49
164	Dependence of crystalline phases in titania on catalytic properties during CO hydrogenation of Co/TiO2 catalysts. Materials Chemistry and Physics, 2005, 89, 395-401.	4.0	22
165	Study of cobalt dispersion on titania consisting various rutile:anatase ratios. Materials Chemistry and Physics, 2005, 92, 572-577.	4.0	24
166	Impact of diene addition on properties for ethylene–propylene copolymerization with rac-Et[Ind]2ZrCl2/MAO catalyst. Materials Letters, 2005, 59, 3771-3774.	2.6	6
167	LLDPE/nano-silica composites synthesized via in situ polymerization of ethylene/1-hexene with MAO/metallocene catalyst. Journal of Materials Science, 2005, 40, 2043-2045.	3.7	23
168	Role of titania in TiO2?SiO2 mixed oxides-supported metallocene catalyst during ethylene/1-octene copolymerization. Catalysis Letters, 2005, 100, 139-146.	2.6	21
169	Catalytic Activity During Copolymerization of Ethylene and 1-Hexene via Mixed TiO2/SiO2-Supported MAO with rac-Et[Ind]2ZrCl2 Metallocene Catalyst. Molecules, 2005, 10, 672-678.	3.8	15
170	Impact of Ti3+ Present in Titania on Characteristics and Catalytic Properties of the Co/TiO2 Catalyst. Industrial & Engineering Chemistry Research, 2005, 44, 6599-6604.	3.7	48
171	Application of Silica/Titania Mixed Oxide-Supported Zirconocene Catalyst for Synthesis of Linear Low-Density Polyethylene. Industrial & Engineering Chemistry Research, 2005, 44, 9059-9063.	3.7	17
172	A comparative study on supporting effect during copolymerization of ethylene/1-olefins with silica-supported zirconocene/MAO catalyst. Materials Chemistry and Physics, 2004, 86, 243-246.	4.0	22
173	A Comparative Study of Ethylene/Â-Olefin Copolymerization with Silane-Modified Silica-Supported MAO Using Zirconocene Catalysts. Catalysis Letters, 2004, 94, 205-208.	2.6	16
174	Co-Support Compound Formation in Titania-Supported Cobalt Catalyst. Catalysis Letters, 2004, 94, 209-215.	2.6	63
175	Effect of silane-modified silica/MAO-supported Et[Ind]2ZrCl2 metallocene catalyst on copolymerization of ethylene. European Polymer Journal, 2004, 40, 2813-2817.	5.4	7
176	Supporting Effects of Silica-Supported Methylaluminoxane (MAO) with Zirconocene Catalyst on Ethylene/1-Olefin Copolymerization Behaviors for Linear Low-Density Polyethylene (LLDPE) Production. Industrial & Density Engineering Chemistry Research, 2004, 43, 7959-7963.	3.7	20
177	Effect of zirconia-modified alumina on the properties of Co/\hat{I}^3 -Al2O3 catalysts. Journal of Catalysis, 2003, 215, 66-77.	6.2	132
178	Co-support compound formation in Co/Al2O3 catalysts: effect of reduction gas containing CO. Catalysis Today, 2002, 77, 191-204.	4.4	77
179	Co-Support Compound Formation in Alumina-Supported Cobalt Catalysts. Journal of Catalysis, 2001, 204, 98-109.	6.2	330