
Hongwei Zeng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6969086/publications.pdf Version: 2024-02-01

HONCWELZENC

#	Article	IF	CITATIONS
1	Global Crop Monitoring: A Satellite-Based Hierarchical Approach. Remote Sensing, 2015, 7, 3907-3933.	1.8	69
2	Variation in actual evapotranspiration following changes in climate and vegetation cover during an ecological restoration period (2000–2015) in the Loess Plateau, China. Science of the Total Environment, 2019, 689, 534-545.	3.9	66
3	Synthesis of global actual evapotranspiration from 1982 to 2019. Earth System Science Data, 2021, 13, 447-480.	3.7	66
4	Efficient Identification of Corn Cultivation Area with Multitemporal Synthetic Aperture Radar and Optical Images in the Google Earth Engine Cloud Platform. Remote Sensing, 2019, 11, 629.	1.8	57
5	Crop Phenology Detection Using High Spatio-Temporal Resolution Data Fused from SPOT5 and MODIS Products. Sensors, 2016, 16, 2099.	2.1	53
6	Assessing potential water savings in agriculture on the Hai Basin plain, China. Agricultural Water Management, 2015, 154, 11-19.	2.4	49
7	A new framework to map fine resolution cropping intensity across the globe: Algorithm, validation, and implication. Remote Sensing of Environment, 2020, 251, 112095.	4.6	46
8	Soil erosion assessment in the Blue Nile Basin driven by a novel RUSLE-GEE framework. Science of the Total Environment, 2021, 793, 148466.	3.9	44
9	Determination of Appropriate Remote Sensing Indices for Spring Wheat Yield Estimation in Mongolia. Remote Sensing, 2019, 11, 2568.	1.8	39
10	GCI30: a global dataset of 30 m cropping intensity using multisource remote sensing imagery. Earth System Science Data, 2021, 13, 4799-4817.	3.7	34
11	Cloud services with big data provide a solution for monitoring and tracking sustainable development goals. Geography and Sustainability, 2020, 1, 25-32.	1.9	33
12	Downscaling TRMM Monthly Precipitation Using Google Earth Engine and Google Cloud Computing. Remote Sensing, 2020, 12, 3860.	1.8	32
13	Assessing factors impacting the spatial discrepancy of remote sensing based cropland products: A case study in Africa. International Journal of Applied Earth Observation and Geoinformation, 2020, 85, 102010.	1.4	31
14	Basin-wide evapotranspiration management: Concept and practical application in Hai Basin, China. Agricultural Water Management, 2014, 145, 145-153.	2.4	27
15	A trade-off method between environment restoration and human water consumption: A case study in Ebinur Lake. Journal of Cleaner Production, 2019, 217, 732-741.	4.6	27
16	A Synthesizing Land-cover Classification Method Based on Google Earth Engine: A Case Study in Nzhelele and Levhuvu Catchments, South Africa. Chinese Geographical Science, 2020, 30, 397-409.	1.2	27
17	Quantifying global agricultural water appropriation with data derived from earth observations. Journal of Cleaner Production, 2022, 358, 131891.	4.6	27
18	Mapping Winter Wheat Biomass and Yield Using Time Series Data Blended from PROBA-V 100- and 300-m S1 Products. Remote Sensing, 2016, 8, 824.	1.8	25

Hongwei Zeng

#	Article	IF	CITATIONS
19	Dryland ecosystem dynamic change and its drivers in Mediterranean region. Current Opinion in Environmental Sustainability, 2021, 48, 59-67.	3.1	24
20	Comparison of Different Cropland Classification Methods under Diversified Agroecological Conditions in the Zambezi River Basin. Remote Sensing, 2020, 12, 2096.	1.8	22
21	Assessment of environmentally sensitive areas to desertification in the Blue Nile Basin driven by the MEDALUS-GEE framework. Science of the Total Environment, 2022, 815, 152925.	3.9	20
22	An Interannual Transfer Learning Approach for Crop Classification in the Hetao Irrigation District, China. Remote Sensing, 2022, 14, 1208.	1.8	20
23	Identification of Crop Type in Crowdsourced Road View Photos with Deep Convolutional Neural Network. Sensors, 2021, 21, 1165.	2.1	16
24	Spatiotemporal Analysis of Precipitation in the Sparsely Gauged Zambezi River Basin Using Remote Sensing and Google Earth Engine. Remote Sensing, 2019, 11, 2977.	1.8	15
25	Satellite-Based Water Consumption Dynamics Monitoring in an Extremely Arid Area. Remote Sensing, 2018, 10, 1399.	1.8	14
26	Performance and the Optimal Integration of Sentinel-1/2 Time-Series Features for Crop Classification in Northern Mongolia. Remote Sensing, 2022, 14, 1830.	1.8	14
27	Indices enhance biological soil crust mapping in sandy and desert lands. Remote Sensing of Environment, 2022, 278, 113078.	4.6	13
28	Approach for Estimating Available Consumable Water for Human Activities in a River Basin. Water Resources Management, 2018, 32, 2353-2368.	1.9	11
29	Enhancing China's Three Red Lines strategy with water consumption limitations. Science Bulletin, 2021, 66, 2057-2060.	4.3	11
30	How long did crops survive from floods caused by Cyclone Idai in Mozambique detected with multi-satellite data. Remote Sensing of Environment, 2022, 269, 112808.	4.6	11
31	Design and characterization of spatial units for monitoring global impacts of environmental factors on major crops and food security. Food and Energy Security, 2016, 5, 40-55.	2.0	10
32	Synthesizing a Regional Territorial Evapotranspiration Dataset for Northern China. Remote Sensing, 2021, 13, 1076.	1.8	10
33	The Impacts of Vegetation and Meteorological Factors on Aerodynamic Roughness Length at Different Time Scales. Atmosphere, 2018, 9, 149.	1.0	7
34	A framework for separating natural and anthropogenic contributions to evapotranspiration of human-managed land covers in watersheds based on machine learning. Science of the Total Environment, 2022, 823, 153726.	3.9	7
35	Quantifying the Contributions of Environmental Factors to Wind Characteristics over 2000–2019 in China. ISPRS International Journal of Geo-Information, 2021, 10, 515.	1.4	6
36	CropWatch agroclimatic indicators (CWAIs) for weather impact assessment on global agriculture. International Journal of Biometeorology, 2017, 61, 199-215.	1.3	5

#	Article	IF	CITATIONS
37	Spatial Allocation Method from Coarse Evapotranspiration Data to Agricultural Fields by Quantifying Variations in Crop Cover and Soil Moisture. Remote Sensing, 2021, 13, 343.	1.8	3
38	Method for Environmental Flows Regulation and Early Warning with Remote Sensing and Land Cover Data. Land, 2021, 10, 1216.	1.2	0