Boris Chesca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6968509/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	SQUID-arrays coupled to on-chip integrated thin-film superconducting input coils operating coherently. Applied Physics Letters, 2021, 118, .	3.3	5
2	Magnetic flux quantum periodicity of the frequency of the on-chip detectable electromagnetic radiation from superconducting flux-flow-oscillators. Applied Physics Letters, 2020, 117, 142601.	3.3	4
3	Superconducting devices based on coherent operation of Josephson junction arrays above 77K. Journal of Physics: Conference Series, 2018, 1054, 012057.	0.4	1
4	Magnetic field tunable vortex diode made of YBa2Cu3O7â^δJosephson junction asymmetrical arrays. Applied Physics Letters, 2017, 111, .	3.3	10
5	2D SQIF arrays using 20 000 YBCO high RnJosephson junctions, a viewpoint. Superconductor Science and Technology, 2016, 29, 080501.	3.5	0
6	Flux-coherent series SQUID array magnetometers operating above 77 K with superior white flux noise than single-SQUIDs at 4.2 K. Applied Physics Letters, 2015, 107, .	3.3	24
7	Dual flux-to-voltage response of YBa ₂ Cu ₃ O _{7â^îî} asymmetric parallel arrays of Josephson junctions. Superconductor Science and Technology, 2014, 27, 055019.	3.5	2
8	Amplification of electromagnetic waves excited by a chain of propagating magnetic vortices in YBa2Cu3O7â^`ÎJosephson-junction arrays at 77 K and above. Superconductor Science and Technology, 2014, 27, 085015.	3.5	9
9	Parallel array of YBa2Cu3O7â^î^ superconducting Josephson vortex-flow transistors with high current gains. Applied Physics Letters, 2013, 103, .	3.3	6
10	Josephson Junctions Made of YBa2Cu3O7-x Superconducting Nanofilms. Physics Procedia, 2013, 40, 65-68.	1.2	0
11	Double rf-SQUIDs Operating in a Non-Adiabatic Regime: A Dream Comes True?. Physics Procedia, 2012, 36, 377-381.	1.2	0
12	Tuning the current-voltage characteristics of Josephson junctions by strong microwave fields. Journal of Physics: Conference Series, 2009, 150, 052034.	0.4	0
13	SQUID-Based Investigation of D-Wave Superconductor Junctions. Sensor Letters, 2009, 7, 263-265.	0.4	0
14	Tunnelling measurements as a new method of investigation of thin film superconducting cuprate junctions. WIT Transactions on Engineering Sciences, 2009, , .	0.0	0
15	Controlling Josephson dynamics by strong microwave fields. Physical Review B, 2008, 78, .	3.2	3
16	Phase Diagram of the Electron-DopedLa2â^'xCexCuO4Cuprate Superconductor from Andreev Bound States at Grain Boundary Junctions. Physical Review Letters, 2008, 100, 227001.	7.8	12
17	Upper bound on the Andreev states induced second harmonic in the Josephson coupling ofYBa2Cu3O7â^î/Nbjunctions from experiment and numerical simulations. Physical Review B, 2008, 77, .	3.2	27
18	Josephson coupling in untwinned YBa2Cu3O7-x/Nb d-wave junctions. Journal of Physics: Conference Series, 2008, 97, 012095.	0.4	2

BORIS CHESCA

#	Article	IF	CITATIONS
19	Observation of Andreev bound states inYBa2Cu3O7â^'xâ^•Auâ^•Nbramp-type Josephson junctions. Physical Review B, 2006, 73, .	3.2	21
20	SQUID Theory. , 2005, , 29-92.		20
21	Phase-sensitive evidence for a predominant d-wave pairing symmetry in the electron doped superconductor La2â^'xCexCuO4â^'y. Physica C: Superconductivity and Its Applications, 2004, 408-410, 321-323.	1.2	0
22	d-Wave Induced Zero-Field Resonances in dcï€-Superconducting Quantum Interference Devices. Physical Review Letters, 2002, 88, 177003.	7.8	23
23	Electronic behavior of spatially distributed junction small inductance dc π-SQUIDs. Physica C: Superconductivity and Its Applications, 2001, 350, 180-186.	1.2	3
24	Order parameter phase sensitive experiments and SDJ dc SQUIDs. Physica C: Superconductivity and Its Applications, 2001, 357-360, 1561-1566.	1.2	1
25	Radio Frequency SQUIDs and their Applications. , 2001, , 505-540.		5
26	Progress in understanding of high-transition-temperature SQUIDs. Physica C: Superconductivity and Its Applications, 2000, 341-348, 2555-2559.	1.2	5
27	Design and realization of an all d-wave dc π-superconducting quantum interference device. Applied Physics Letters, 2000, 76, 912-914.	3.3	118
28	Experimental study of amplitude–frequency characteristics of high-transition-temperature radio frequency superconducting quantum interference devices. Journal of Applied Physics, 2000, 88, 6781-6787.	2.5	18
29	The effect of thermal noise on the operation of DC SQUIDs at 77 K-a fundamental analytical approach. IEEE Transactions on Applied Superconductivity, 1999, 9, 2955-2960.	1.7	16
30	Theory of rf SQUIDS operating at 77 K. Applied Superconductivity, 1999, 6, 829-835.	0.5	0
31	Title is missing!. Journal of Low Temperature Physics, 1999, 116, 167-186.	1.4	5
32	Transfer function and thermal noise of YBa2Cu3O7â^î^ direct current superconducting quantum interference devices operated under large thermal fluctuations. Applied Physics Letters, 1999, 74, 2209-2211.	3.3	11
33	Magnetic field dependencies of the critical current and of the resonant modes of dc SQUIDs fabricated from superconductors withs +idx2—y2 order-parameter symmetries. Annalen Der Physik, 1999, 8, 511-522.	2.4	23
34	Title is missing!. Annalen Der Physik, 1999, 8, 511-522.	2.4	1
35	Magnetic field dependencies of the critical current and of the resonant modes of dc SQUIDs fabricated from superconductors with <i>s</i> + <i>id</i> orderâ€parameter symmetries. Annalen Der Physik, 1999, 511, 511-522.	2.4	0
36	Analytical Theory of DC SQUIDS Operating in the Presence of Thermal Fluctuations. Journal of Low Temperature Physics, 1998, 111, 165-196.	1.4	26

BORIS CHESCA

#	Article	IF	CITATIONS
37	Theory of RF SQUIDs Operating in the Presence of Large Thermal Fluctuations. Journal of Low Temperature Physics, 1998, 110, 963-1001.	1.4	44
38	A three-hole RF/UHF double squid as a natural second-order magnetic gradiometer. Physica C: Superconductivity and Its Applications, 1997, 273, 233-238.	1.2	0
39	Output signal and noise characteristics in RF pumped double SQUIDS. Journal of Low Temperature Physics, 1997, 106, 509-514.	1.4	0
40	RF double SQUID: statics, dynamics, signal and noise properties. European Physical Journal D, 1996, 46, 2813-2814.	0.4	0
41	A thermal-activation model for intrinsic noise in RF pumped double SQUID'S. Physica C: Superconductivity and Its Applications, 1996, 256, 261-282.	1.2	5
42	Theory of a UHF pumped double SQUID. Physica C: Superconductivity and Its Applications, 1996, 270, 1-20.	1.2	3
43	On the theory of the RF pumped double SQUID. Physica C: Superconductivity and Its Applications, 1995, 241, 123-136.	1.2	7
44	On the theoretical study of an RF-SQUID operation taking into account the noise influence. Journal of Low Temperature Physics, 1994, 94, 515-538.	1.4	7
45	On the theory of the symmetrical double SQUID. Physica C: Superconductivity and Its Applications, 1994, 220, 249-257.	1.2	3
46	Current-Phase Relation of YBa ₂ Cu ₃ O _{7-X} /Nb Unconventional Superconductor Junctions. Materials Science Forum, 0, 670, 38-41.	0.3	0