
Meftah Ali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6968454/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanical properties of swift heavy ion irradiated Y3Al5O12 single crystal. Nuclear Instruments & Methods in Physics Research B, 2018, 435, 137-141.	1.4	3
2	Data consistencies of swift heavy ion induced damage creation in yttrium iron garnet analyzed by different techniques. Nuclear Instruments & Methods in Physics Research B, 2016, 366, 155-160.	1.4	15
3	Annealing effects on the structural, electrical and optical properties of ZnO thin films prepared by thermal evaporation technique. Journal of King Saud University - Science, 2015, 27, 356-360.	3.5	57
4	Accumulation of color centers in lithium fluoride crystals under irradiation with swift lead projectiles. Nuclear Instruments & Methods in Physics Research B, 2015, 359, 57-59.	1.4	2
5	Defect creation in Ge and GaAs semiconductor crystals by huge electronic excitations: A thermal spike description. Canadian Journal of Physics, 2014, 92, 1632-1637.	1.1	4
6	Thermoluminescence study of Al2O3 and Y3Al5O12 single crystals irradiated with reactor neutrons. Nuclear Instruments & Methods in Physics Research B, 2014, 326, 90-94.	1.4	3
7	Reply to "Comment on †Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2crystal: Evidence for two thresholds of damage creation' ― Physical Review B, 2013, 87, .	3.2	5
8	Damage creation threshold of Al2O3 under swift heavy ion irradiation. Nuclear Instruments & Methods in Physics Research B, 2012, 286, 247-253.	1.4	25
9	Dense and nanometric electronic excitations induced by swift heavy ions in an ionic CaF2crystal: Evidence for two thresholds of damage creation. Physical Review B, 2012, 85, .	3.2	67
10	Nanometric transformation of the matter by short and intense electronic excitation: Experimental data versus inelastic thermal spike model. Nuclear Instruments & Methods in Physics Research B, 2012, 277, 28-39.	1.4	138
11	XRD and AFM study of radiation damage induced by swift heavy ions in Y ₃ Al ₅ O ₁₂ single crystals. Radiation Effects and Defects in Solids, 2011, 166, 513-521.	1.2	11
12	Electronic sputtering of Gd3Ga5O12 and Y3Fe5O12 garnets: Yield, stoichiometry and comparison to track formation. Nuclear Instruments & Methods in Physics Research B, 2011, 269, 955-958.	1.4	15
13	Structural disorder in sapphire induced by 90.3MeV xenon ions. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 3195-3198.	1.4	18
14	Thermal annealing study of F center clusters in LiF single crystals. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 613, 9-14.	1.6	8
15	Colour centres formation in CaF2 single crystals by Î ³ -rays and reactor neutrons. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2010, 621, 68-70.	1.6	6
16	Behavior of crystalline silicon under huge electronic excitations: A transient thermal spike description. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 2719-2724.	1.4	57
17	Defects creation in sapphire by swift heavy ions: A fluence depending process. Nuclear Instruments & Methods in Physics Research B, 2009, 267, 957-959.	1.4	10
18	Li colloids formation study induced by reactor neutrons in LiF single crystals. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2745-2749.	1.4	9

Meftah Ali

#	Article	IF	CITATIONS
19	Amorphization of sapphire induced by swift heavy ions: A two step process. Nuclear Instruments & Methods in Physics Research B, 2008, 266, 2976-2980.	1.4	31
20	Color centers induced in Y3Al5O12 single crystals by swift heavy ions and reactor neutrons. Nuclear Instruments & Methods in Physics Research B, 2007, 256, 266-271.	1.4	3
21	Color centers in neutron-irradiated Y3Al5O12, CAF2 and LiF single crystals. Journal of Luminescence, 2007, 127, 696-702.	3.1	28
22	Radiation damage induced by swift heavy ions and reactor neutrons in Y3Al5O12 single crystals. Nuclear Instruments & Methods in Physics Research B, 2007, 258, 395-402.	1.4	10
23	Melting of Au and Al in nanometer Fe/Au and Fe/Al multilayers under swift heavy ions: A thermal spike study. Nuclear Instruments & Methods in Physics Research B, 2006, 245, 150-156.	1.4	14
24	Short-time reactor neutron irradiation of YSZ prepared using reactive calcination method. Radiation Effects and Defects in Solids, 2006, 161, 297-303.	1.2	1
25	NUR reflectometer for neutron optics device investigations. Physica B: Condensed Matter, 2005, 364, 29-32.	2.7	1
26	Experimental determination of track cross-section in Gd3Ga5O12 and comparison to the inelastic thermal spike model applied to several materials. Nuclear Instruments & Methods in Physics Research B, 2005, 237, 563-574.	1.4	166
27	Transient thermal processes in heavy ion irradiation of crystalline inorganic insulators. Nuclear Instruments & Methods in Physics Research B, 2000, 166-167, 903-912.	1.4	419
28	Sputtering of vitreous SiO2 and Y3Fe5O12 in the electronic stopping power region: A thermal spike description. Nuclear Instruments & Methods in Physics Research B, 1998, 146, 431-436.	1.4	33
29	Out-of-plane swelling of gadolinium gallium garnet induced by swift heavy ions. Nuclear Instruments & Methods in Physics Research B, 1998, 146, 426-430.	1.4	24
30	Thermal Spike Description of the Damage Creation in Y ₃ Al ₅ O ₁₂ Induced by Swift Heavy Ions. Materials Science Forum, 1997, 248-249, 53-56.	0.3	20
31	Swelling of SiO ₂ Quartz Induced by Energetic Heavy Ions. Materials Research Society Symposia Proceedings, 1997, 504, 123.	0.1	16
32	Thermal spike model applied to the irradiated yttrium iron garnet: Mean diffusion length of the energy deposited on the electrons. Nuclear Instruments & Methods in Physics Research B, 1997, 122, 470-475.	1.4	44
33	Electronic stopping power threshold of sputtering in yttrium iron garnet. Nuclear Instruments & Methods in Physics Research B, 1996, 107, 242-245.	1.4	16
34	Track creation in SiO2 and BaFe12O19 by swift heavy ions: a thermal spike description. Nuclear Instruments & Methods in Physics Research B, 1996, 116, 37-42.	1.4	208
35	Damage of M-type baryum hexaferrites induced by GeV-heavy ion irradiations. , 1996, , 567-572.		0
36	Damage of M-type baryum hexaferrites induced by GeV-heavy ion irradiations. Nuclear Instruments & Methods in Physics Research B, 1995, 106, 567-572.	1.4	9

Meftah Ali

#	Article	IF	CITATIONS
37	Europium diffusion in y- and z-cut linbo3pre-irradiated by gev uranium ions. Radiation Effects and Defects in Solids, 1995, 136, 279-282.	1.2	0
38	Europium diffusion enhancement in lithium niobate by GeV gadolinium ion irradiations. Journal of Applied Physics, 1995, 77, 2952-2956.	2.5	9
39	Latent track formation in LiNbO3single crystals irradiated by GeV uranium ions. Radiation Effects and Defects in Solids, 1995, 136, 307-310.	1.2	9
40	Swift-uranium-ion-induced damage in sapphire. Physical Review B, 1995, 51, 12194-12201.	3.2	100
41	M¶ssbauer study of sapphire irradiated with high energy heavy ions. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 274-279.	1.4	6
42	Damage and conductivity of yttrium iron garnet irradiated with GeV-heavy ions. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 288-293.	1.4	13
43	Damage induced in LiNbO3 single crystals by GeV gadolinium ions. Nuclear Instruments & Methods in Physics Research B, 1994, 91, 312-316.	1.4	61
44	Track formation inSiO2quartz and the thermal-spike mechanism. Physical Review B, 1994, 49, 12457-12463.	3.2	343
45	High energy heavy ion irradiation effects in α-Al2O3. Nuclear Instruments & Methods in Physics Research B, 1993, 80-81, 1114-1118.	1.4	46
46	Spontaneous magnetization induced in the spinel ZnFe2O4 by heavy ion irradiation in the electronic stopping power regime. Nuclear Instruments & Methods in Physics Research B, 1993, 82, 91-102.	1.4	55
47	Swift heavy ions in magnetic insulators: A damage-cross-section velocity effect. Physical Review B, 1993, 48, 920-925.	3.2	340
48	Electronic stopping power threshold of damage creation in yttrium iron garnet. Radiation Effects and Defects in Solids, 1993, 126, 251-254.	1.2	18
49	Conductivity modifications of calcium-doped yttrium iron garnet by swift heavy ion irradiations. Radiation Effects and Defects in Solids, 1993, 126, 233-236.	1.2	22
50	High energy heavy ion irradiation damage in yttrium iron garnet. Nuclear Instruments & Methods in Physics Research B, 1992, 65, 568-575.	1.4	50
51	High-energy irradiation of magnetic insulators by lead ions: appearance of a plateau in the damage efficiency. Nuclear Instruments & Methods in Physics Research B, 1991, 59-60, 605-608.	1.4	37