Manuel Tsotsalas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6968413/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	59
2	MOFSocialNet: Exploiting Metal-Organic Framework Relationships via Social Network Analysis. Nanomaterials, 2022, 12, 704.	4.1	9
3	Spectroscopic Investigation of Bianthrylâ€Based Metal–Organic Framework Thin Films and Their Photoinduced Topotactic Transformation. Advanced Materials Interfaces, 2022, 9, .	3.7	4
4	Dynamic Surface Modification of Metal–Organic Framework Nanoparticles via Alkoxyamine Functional Groups. Langmuir, 2022, 38, 6531-6538.	3.5	4
5	Covalent Adaptable Networks Based on Dynamic Alkoxyamine Bonds. Macromolecular Materials and Engineering, 2022, 307, .	3.6	8
6	Aktuelle Trends zu Metallâ€organischen und kovalenten organischen Netzwerken als Membranmaterialien. Angewandte Chemie, 2021, 133, 15281-15293.	2.0	6
7	Current Trends in Metal–Organic and Covalent Organic Framework Membrane Materials. Angewandte Chemie - International Edition, 2021, 60, 15153-15164.	13.8	96
8	Performance Fabrics Obtained by <i>In Situ</i> Growth of Metal–Organic Frameworks in Electrospun Fibers. ACS Applied Materials & Interfaces, 2021, 13, 12491-12500.	8.0	31
9	Dynamic porous organic polymers with tuneable crosslinking degree and porosity. RSC Advances, 2021, 11, 27714-27719.	3.6	12
10	Rigid Multidimensional Alkoxyamines: A Versatile Building Block Library. European Journal of Organic Chemistry, 2021, 2021, 239-245.	2.4	2
11	Assembly of Molecular Building Blocks into Integrated Complex Functional Molecular Systems: Structuring Matter Made to Order. Advanced Functional Materials, 2020, 30, 1907625.	14.9	34
12	Flash synthesis for conformal monolithic coatings of the Zr-based metal-organic framework (UiO-66-NH2) on non-modified surfaces: Applications in thin-film electrode systems. Surfaces and Interfaces, 2020, 20, 100587.	3.0	5
13	Polymerization in MOF-Confined Nanospaces: Tailored Architectures, Functions, and Applications. Langmuir, 2020, 36, 10657-10673.	3.5	35
14	Design of Metal-Organic Framework Templated Materials Using High-Throughput Computational Screening. Molecules, 2020, 25, 4875.	3.8	11
15	Dynamic covalent polymer networks <i>via</i> combined nitroxide exchange reaction and nitroxide mediated polymerization. Polymer Chemistry, 2020, 11, 2502-2510.	3.9	17
16	Electrolytic Conversion of Sacrificial Metal–Organic Framework Thin Films into an Electrocatalytically Active Monolithic Oxide Coating for the Oxygenâ€Evolution Reaction. Energy Technology, 2019, 7, 1900967.	3.8	13
17	Synthesis, Transfer, and Gas Separation Characteristics of MOF-Templated Polymer Membranes. Membranes, 2019, 9, 124.	3.0	10
18	Recycling and self-healing of dynamic covalent polymer networks with a precisely tuneable crosslinking degree. Polymer Chemistry, 2019, 10, 672-678.	3.9	40

MANUEL TSOTSALAS

#	Article	IF	CITATIONS
19	Rising Up: Hierarchical Metal–Organic Frameworks in Experiments and Simulations. Advanced Materials, 2019, 31, e1901744.	21.0	103
20	Metal–Organic Framework-Templated Biomaterials: Recent Progress in Synthesis, Functionalization, and Applications. Accounts of Chemical Research, 2019, 52, 1598-1610.	15.6	112
21	Self-reporting and refoldable profluorescent single-chain nanoparticles. Chemical Science, 2018, 9, 4696-4702.	7.4	27
22	High Antimicrobial Activity of Metal–Organic Framework-Templated Porphyrin Polymer Thin Films. ACS Applied Materials & Interfaces, 2018, 10, 1528-1533.	8.0	74
23	Bringing Porous Organic and Carbonâ€Based Materials toward Thinâ€Film Applications. Advanced Functional Materials, 2018, 28, 1801545.	14.9	53
24	Functional microporous polymers through Cu-mediated, free-radical polymerization of buckminster [60] fullerene. Carbon, 2017, 118, 215-224.	10.3	7
25	Pt Immobilization within a Tailored Porous-Organic Polymer–Graphene Composite: Opportunities in the Hydrogen Evolving Reaction. ACS Catalysis, 2017, 7, 7847-7854.	11.2	35
26	Excitonically Coupled States in Crystalline Coordination Networks. Chemistry - A European Journal, 2017, 23, 14316-14322.	3.3	30
27	Localized Conversion of Metal–Organic Frameworks into Polymer Gels via Light-Induced Click Chemistry. Chemistry of Materials, 2017, 29, 5982-5989.	6.7	26
28	Fast and efficient synthesis of microporous polymer nanomembranes via light-induced click reaction. Beilstein Journal of Organic Chemistry, 2017, 13, 558-563.	2.2	11
29	Tuning the Cell Adhesion on Biofunctionalized Nanoporous Organic Frameworks. Advanced Functional Materials, 2016, 26, 8455-8462.	14.9	29
30	Radical exchange reaction of multi-spin isoindoline nitroxides followed by EPR spectroscopy. RSC Advances, 2016, 6, 55715-55719.	3.6	19
31	Freestanding MOF Microsheets with Defined Size and Geometry Using Superhydrophobic–Superhydrophilic Arrays. Advanced Materials Interfaces, 2016, 3, 1500392.	3.7	32
32	Surface functionalization of conjugated microporous polymer thin films and nanomembranes using orthogonal chemistries. Journal of Materials Chemistry A, 2016, 4, 6815-6818.	10.3	24
33	Layer-by-layer Synthesis and Transfer of Freestanding Conjugated Microporous Polymer Nanomembranes. Journal of Visualized Experiments, 2015, , e53324.	0.3	3
34	Covalently Linked Organic Networks. Frontiers in Materials, 2015, 2, .	2.4	6
35	Hierarchically Functionalized Magnetic Core/Multishell Particles and Their Postsynthetic Conversion to Polymer Capsules. ACS Nano, 2015, 9, 4219-4226.	14.6	39
36	Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers. Applied Physics Letters, 2015, 107, .	3.3	9

MANUEL TSOTSALAS

#	Article	IF	CITATIONS
37	Terahertz near-field phase contrast imaging. , 2014, , .		0
38	Terahertz phase contrast imaging of sorption kinetics in porous coordination polymer nanocrystals using differential optical resonator. Optics Express, 2014, 22, 11061.	3.4	3
39	Preparation of Freestanding Conjugated Microporous Polymer Nanomembranes for Gas Separation. Chemistry of Materials, 2014, 26, 7189-7193.	6.7	117
40	Fabrication of Highly Uniform Gel Coatings by the Conversion of Surface-Anchored Metal–Organic Frameworks. Journal of the American Chemical Society, 2014, 136, 8-11.	13.7	116
41	Electrochemical investigation of covalently post-synthetic modified SURGEL coatings. Chemical Communications, 2014, 50, 11129-11131.	4.1	22
42	Internalization Pathways of Anisotropic Discâ€Shaped Zeolite L Nanocrystals with Different Surface Properties in HeLa Cancer Cells. Small, 2013, 9, 1809-1820.	10.0	38
43	Impact of Molecular Clustering inside Nanopores on Desorption Processes. Journal of the American Chemical Society, 2013, 135, 4608-4611.	13.7	28
44	Crystal morphology-directed framework orientation in porous coordination polymer films and freestanding membranes via Langmuir–Blodgettry. Journal of Materials Chemistry, 2012, 22, 10159.	6.7	74
45	Mesoscopic architectures of porous coordination polymers fabricated by pseudomorphic replication. Nature Materials, 2012, 11, 717-723.	27.5	352
46	Porous Coordination Polymer Hybrid Device with Quartz Oscillator: Effect of Crystal Size on Sorption Kinetics. Journal of the American Chemical Society, 2011, 133, 11932-11935.	13.7	98
47	Dynamic Microcrystal Assembly by Nitroxide Exchange Reactions. Angewandte Chemie - International Edition, 2010, 49, 6881-6884.	13.8	79
48	Encapsulating 111In in Nanocontainers for Scintigraphic Imaging: Synthesis, Characterization, and In Vivo Biodistribution. ACS Nano, 2010, 4, 342-348.	14.6	82
49	Functionalized Nanocontainers as Dual Magnetic and Optical Probes for Molecular Imaging Applications. Chemistry of Materials, 2008, 20, 5888-5893.	6.7	73
50	MOF Synthesis Prediction Enabled by Automatic Data Mining and Machine Learning. Angewandte Chemie, 0, , .	2.0	1
51	Solid and Hollow Poly(<i>p</i> -xylylene) Particles Synthesis <i>via</i> Metal–Organic Framework-Templated Chemical Vapor Polymerization. Chemistry of Materials, 0, , .	6.7	4