
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6968111/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation. Plant Physiology, 2015, 169, 971-985.	2.3	532
2	Selection-free zinc-finger-nuclease engineering by context-dependent assembly (CoDA). Nature Methods, 2011, 8, 67-69.	9.0	480
3	A CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants, 2017, 3, 17018.	4.7	425
4	Transcription Activator-Like Effector Nucleases Enable Efficient Plant Genome Engineering Â. Plant Physiology, 2012, 161, 20-27.	2.3	407
5	The emerging and uncultivated potential of CRISPR technology in plant science. Nature Plants, 2019, 5, 778-794.	4.7	294
6	A large-scale whole-genome sequencing analysis reveals highly specific genome editing by both Cas9 and Cpf1 (Cas12a) nucleases in rice. Genome Biology, 2018, 19, 84.	3.8	230
7	BR-SIGNALING KINASE1 Physically Associates with FLAGELLIN SENSING2 and Regulates Plant Innate Immunity in <i>Arabidopsis</i> Å. Plant Cell, 2013, 25, 1143-1157.	3.1	212
8	Plant genome editing with TALEN and CRISPR. Cell and Bioscience, 2017, 7, 21.	2.1	197
9	Activities and specificities of <scp>CRISPR</scp> /Cas9 and Cas12a nucleases for targeted mutagenesis in maize. Plant Biotechnology Journal, 2019, 17, 362-372.	4.1	192
10	Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems. Molecular Plant, 2018, 11, 245-256.	3.9	179
11	Precise plant genome editing using base editors and prime editors. Nature Plants, 2021, 7, 1166-1187.	4.7	172
12	Application of CRISPR-Cas12a temperature sensitivity for improved genome editing in rice, maize, and Arabidopsis. BMC Biology, 2019, 17, 9.	1.7	172
13	Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG. Molecular Plant, 2019, 12, 1027-1036.	3.9	159
14	CRISPR-Cas9 Based Genome Editing Reveals New Insights into MicroRNA Function and Regulation in Rice. Frontiers in Plant Science, 2017, 8, 1598.	1.7	150
15	Plant Prime Editors Enable Precise Gene Editing inÂRice Cells. Molecular Plant, 2020, 13, 667-670.	3.9	148
16	A Single Transcript CRISPR-Cas9 System for Efficient Genome Editing in Plants. Molecular Plant, 2016, 9, 1088-1091.	3.9	144
17	Increasing frequencies of site-specific mutagenesis and gene targeting in <i>Arabidopsis</i> by manipulating DNA repair pathways. Genome Research, 2013, 23, 547-554.	2.4	142
18	PAM-less plant genome editing using a CRISPR–SpRY toolbox. Nature Plants, 2021, 7, 25-33.	4.7	140

#	Article	IF	CITATIONS
19	Plant Genome Editing Using FnCpf1 and LbCpf1 Nucleases at Redefined and Altered PAM Sites. Molecular Plant, 2018, 11, 999-1002.	3.9	136
20	Multiplex QTL editing of grain-related genes improves yield in elite rice varieties. Plant Cell Reports, 2019, 38, 475-485.	2.8	136
21	Efficient CRISPR/Cas9-based genome editing in carrot cells. Plant Cell Reports, 2018, 37, 575-586.	2.8	130
22	Targeted Mutagenesis of <i>Arabidopsis thaliana</i> Using Engineered TAL Effector Nucleases. G3: Genes, Genomes, Genetics, 2013, 3, 1697-1705.	0.8	127
23	Single transcript unit <scp>CRISPR</scp> 2.0 systems for robust Cas9 and Cas12a mediated plant genome editing. Plant Biotechnology Journal, 2019, 17, 1431-1445.	4.1	120
24	CRISPR–Cas12b enables efficient plant genome engineering. Nature Plants, 2020, 6, 202-208.	4.7	116
25	Development of japonica Photo-Sensitive Genic Male Sterile Rice Lines by Editing Carbon Starved Anther Using CRISPR/Cas9. Journal of Genetics and Genomics, 2016, 43, 415-419.	1.7	99
26	CRISPR–Act3.0 for highly efficient multiplexed gene activation in plants. Nature Plants, 2021, 7, 942-953.	4.7	99
27	An efficient <i>Agrobacterium</i> â€mediated transient transformation of Arabidopsis. Plant Journal, 2012, 69, 713-719.	2.8	95
28	Physical Association of Arabidopsis Hypersensitive Induced Reaction Proteins (HIRs) with the Immune Receptor RPS2. Journal of Biological Chemistry, 2011, 286, 31297-31307.	1.6	94
29	Physical association of patternâ€ŧriggered immunity (PTI) and effectorâ€ŧriggered immunity (ETI) immune receptors in Arabidopsis. Molecular Plant Pathology, 2011, 12, 702-708.	2.0	91
30	Purification of lowâ€abundance Arabidopsis plasmaâ€membrane protein complexes and identification of candidate components. Plant Journal, 2009, 57, 932-944.	2.8	85
31	Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nature Communications, 2021, 12, 1944.	5.8	79
32	CRISPR ribonucleoprotein-mediated genetic engineering in plants. Plant Communications, 2021, 2, 100168.	3.6	77
33	Construct design for CRISPR/Cas-based genome editing in plants. Trends in Plant Science, 2021, 26, 1133-1152.	4.3	76
34	Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism. Plant Cell Reports, 2016, 35, 1545-1554.	2.8	74
35	Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing. Frontiers in Plant Science, 2016, 7, 1683.	1.7	73
36	Targeted Deletion and Inversion of Tandemly Arrayed Genes in <i>Arabidopsis thaliana</i> Using Zinc Finger Nucleases. G3: Genes, Genomes, Genetics, 2013, 3, 1707-1715.	0.8	72

#	Article	IF	CITATIONS
37	CRISPR/Cas9 for plant genome editing: accomplishments, problems and prospects. Plant Cell Reports, 2016, 35, 1417-1427.	2.8	72
38	ERECTA is required for protection against heat-stress in the AS1 / AS2 pathway to regulate adaxial?abaxial leaf polarity in Arabidopsis. Planta, 2004, 219, 270-276.	1.6	68
39	Boosting plant genome editing with a versatile CRISPR-Combo system. Nature Plants, 2022, 8, 513-525.	4.7	60
40	Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnology Journal, 2021, 19, 2052-2068.	4.1	55
41	CRISPR/dCas-mediated transcriptional and epigenetic regulation in plants. Current Opinion in Plant Biology, 2021, 60, 101980.	3.5	50
42	Breeding customâ€designed crops for improved drought adaptation. Genetics & Genomics Next, 2021, 2, e202100017.	0.8	48
43	A Putative RNA-Binding Protein Positively Regulates Salicylic Acid–Mediated Immunity in <i>Arabidopsis</i> . Molecular Plant-Microbe Interactions, 2010, 23, 1573-1583.	1.4	45
44	Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems. Methods in Molecular Biology, 2017, 1629, 167-184.	0.4	45
45	CRISPRâ€Cas12a enables efficient biallelic gene targeting in rice. Plant Biotechnology Journal, 2020, 18, 1351-1353.	4.1	42
46	CRISPR/Cas9â€mediated genome editing for wheat grain quality improvement. Plant Biotechnology Journal, 2021, 19, 1684-1686.	4.1	41
47	Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing. Frontiers in Plant Science, 2019, 10, 1173.	1.7	39
48	Efficient multiplex genome editing by CRISPR/Cas9 in common wheat. Plant Biotechnology Journal, 2021, 19, 427-429.	4.1	38
49	Base Editing Landscape Extends to Perform Transversion Mutation. Trends in Genetics, 2020, 36, 899-901.	2.9	37
50	Efficient deletion of multiple circle RNA loci by CRISPR as9 reveals <i>Os06circ02797</i> as a putative sponge for <i>OsMIR408</i> in rice. Plant Biotechnology Journal, 2021, 19, 1240-1252.	4.1	37
51	Highly efficient Câ€ŧoâ€T and Aâ€ŧoâ€G base editing in a <i>Populus</i> hybrid. Plant Biotechnology Journal, 2021, 19, 1086-1088.	4.1	32
52	Exploring C-To-G Base Editing in Rice, Tomato, and Poplar. Frontiers in Genome Editing, 2021, 3, 756766.	2.7	32
53	CRISPRâ€Cas9 mediated <i>OsMIR168a</i> knockout reveals its pleiotropy in rice. Plant Biotechnology Journal, 2022, 20, 310-322.	4.1	32
54	Expanding plant genome-editing scope by an engineered iSpyMacCas9 system that targets A-rich PAM sequences. Plant Communications, 2021, 2, 100101.	3.6	31

#	Article	IF	CITATIONS
55	<scp>SIS</scp> 8, a putative mitogenâ€activated protein kinase kinase kinase, regulates sugarâ€resistant seedling development in Arabidopsis. Plant Journal, 2014, 77, 577-588.	2.8	30
56	Pathways to de novo domestication of crop wild relatives. Plant Physiology, 2022, 188, 1746-1756.	2.3	27
57	Genome- and transcriptome-wide off-target analyses of an improved cytosine base editor. Plant Physiology, 2021, 187, 73-87.	2.3	25
58	Genomeâ€wide analyses of PAMâ€relaxed Cas9 genome editors reveal substantial offâ€ŧarget effects by ABE8e in rice. Plant Biotechnology Journal, 2022, 20, 1670-1682.	4.1	23
59	Histone H2AX and the small RNA pathway modulate both non-homologous end-joining and homologous recombination in plants. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2016, 783, 9-14.	0.4	22
60	Intron-Based Single Transcript Unit CRISPR Systems for Plant Genome Editing. Rice, 2020, 13, 8.	1.7	22
61	ZFN, TALEN and CRISPR-Cas9 mediated homology directed gene insertion in Arabidopsis: A disconnect between somatic and germinal cells. Journal of Genetics and Genomics, 2018, 45, 681-684.	1.7	21
62	CRISPRâ€BETS: a baseâ€editing design tool for generating stop codons. Plant Biotechnology Journal, 2022, 20, 499-510.	4.1	21
63	Highly Efficient Genome Editing in Plant Protoplasts by Ribonucleoprotein Delivery of CRISPR-Cas12a Nucleases. Frontiers in Genome Editing, 2022, 4, 780238.	2.7	21
64	Plant Gene Regulation Using Multiplex CRISPR-dCas9 Artificial Transcription Factors. Methods in Molecular Biology, 2018, 1676, 197-214.	0.4	18
65	CRISPR enables directed evolution in plants. Genome Biology, 2019, 20, 83.	3.8	17
66	Heritable base-editing in <i>Arabidopsis</i> using RNA viral vectors. Plant Physiology, 2022, 189, 1920-1924.	2.3	17
67	CRISPR-Cas nucleases and base editors for plant genome editing. ABIOTECH, 2020, 1, 74-87.	1.8	16
68	Membrane microdomain may be a platform for immune signaling. Plant Signaling and Behavior, 2012, 7, 454-456.	1.2	15
69	Rapid Construction of Multiplexed CRISPR-Cas9 Systems for Plant Genome Editing. Methods in Molecular Biology, 2017, 1578, 291-307.	0.4	15
70	Inhibition of Carotenoid Biosynthesis by CRISPR/Cas9 Triggers Cell Wall Remodelling in Carrot. International Journal of Molecular Sciences, 2021, 22, 6516.	1.8	14
71	Plant prime editing goes prime. Nature Plants, 2022, 8, 20-22.	4.7	13
72	Highly efficient CRISPR systems for loss-of-function and gain-of-function research in pear calli. Horticulture Research, 2022, 9, .	2.9	12

#	Article	IF	CITATIONS
73	Plant Gene Knockout and Knockdown by CRISPR-Cpf1 (Cas12a) Systems. Methods in Molecular Biology, 2019, 1917, 245-256.	0.4	11
74	Generating Photoperiod-Sensitive Genic Male Sterile Rice Lines with CRISPR/Cas9. Methods in Molecular Biology, 2019, 1917, 97-107.	0.4	8
75	Knocking Out MicroRNA Genes in Rice with CRISPR-Cas9. Methods in Molecular Biology, 2019, 1917, 109-119.	0.4	8
76	Development of a RAD-Seq Based DNA Polymorphism Identification Software, AgroMarker Finder, and Its Application in Rice Marker-Assisted Breeding. PLoS ONE, 2016, 11, e0147187.	1.1	7
77	Tailor-Made Mutations in Arabidopsis Using Zinc Finger Nucleases. Methods in Molecular Biology, 2014, 1062, 193-209.	0.4	7
78	CRISPR Cas9- and Cas12a-mediated gusA editing in transgenic blueberry. Plant Cell, Tissue and Organ Culture, 0, , 1.	1.2	7
79	Plant-Based Biosensors for Detecting CRISPR-Mediated Genome Engineering. ACS Synthetic Biology, 2021, 10, 3600-3603.	1.9	7
80	High Efficient Genome Modification by Designed Zinc Finger Nuclease. , 2015, , 39-53.		5
81	Genome editing is revolutionizing biology. Cell and Bioscience, 2017, 7, 35.	2.1	5
82	Rapid Vector Construction and Assessment of BE3 and Target-AID C to T Base Editing Systems in Rice Protoplasts. Methods in Molecular Biology, 2021, 2238, 95-113.	0.4	5
83	Promoter analysis of the sweet potato ADP-glucose pyrophosphorylase gene IbAGP1 in Nicotiana tabacum. Plant Cell Reports, 2015, 34, 1873-1884.	2.8	4
84	Analysis of Off-Target Mutations in CRISPR-Edited Rice Plants Using Whole-Genome Sequencing. Methods in Molecular Biology, 2021, 2238, 145-172.	0.4	4
85	Plant genome engineering from lab to field—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 35-54.	1.8	4
86	Prime editor integrase systems boost targeted DNA insertion and beyond. Trends in Biotechnology, 2022, 40, 907-909.	4.9	4
87	CRISPR-Act2.0: An Improved Multiplexed System for Plant Transcriptional Activation. Methods in Molecular Biology, 2019, 1917, 83-93.	0.4	3
88	Purification of Resistance Protein Complexes Using a Biotinylated Affinity (HPB) Tag. Methods in Molecular Biology, 2011, 712, 21-30.	0.4	3
89	Diverse Systems for Efficient Sequence Insertion and Replacement in Precise Plant Genome Editing. Biodesign Research, 2020, 2020, .	0.8	3
90	Expanding the targeting scope of Foklâ€dCas nuclease systems with SpRY and Mb2Cas12a. Biotechnology Journal, 2022, 17, e2100571.	1.8	3

#	Article	IF	CITATIONS
91	Efficient Multiplexed CRISPR-Cas12a Genome Editing in Plants. Springer Protocols, 2021, , 41-56.	0.1	2
92	Single Transcript Unit CRISPR 2.0 Systems for Genome Editing in Rice. Methods in Molecular Biology, 2021, 2238, 193-204.	0.4	2
93	Improving a Quantitative Trait in Rice by Multigene Editing with CRISPR-Cas9. Methods in Molecular Biology, 2021, 2238, 205-219.	0.4	2
94	Editorial overview: Advancing basic plant research and crop improvement through cutting-edge biotechnologies. Current Opinion in Plant Biology, 2021, 60, 102069.	3.5	2
95	of TALEN and for Plant Genome Engineering. Methods in Molecular Biology, 2021, 2264, 207-218.	0.4	1
96	CRISPRâ€Act3.0â€Based Highly Efficient Multiplexed Gene Activation in Plants. Current Protocols, 2022, 2, e365.	1.3	1
97	Assembly and Assessment of Prime Editing Systems for Precise Genome Editing in Plants. Springer Protocols, 2021, , 83-101.	0.1	0