Stephen D Miller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6967806/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tolerogenic Delivery of a Hybrid Insulin Peptide Markedly Prolongs Islet Graft Survival in the NOD Mouse. Diabetes, 2022, 71, 483-496.	0.3	7
2	PLG nanoparticles target fibroblasts and MARCO+ monocytes to reverse multiorgan fibrosis. JCI Insight, 2022, 7, .	2.3	8
3	Masked Delivery of Allergen in Nanoparticles Safely Attenuates Anaphylactic Response in Murine Models of Peanut Allergy. Frontiers in Allergy, 2022, 3, 829605.	1.2	9
4	Mechanistic contributions of Kupffer cells and liver sinusoidal endothelial cells in nanoparticle-induced antigen-specific immune tolerance. Biomaterials, 2022, 283, 121457.	5.7	21
5	Tolerogenic Immune-Modifying Nanoparticles Encapsulating Multiple Recombinant Pancreatic β Cell Proteins Prevent Onset and Progression of Type 1 Diabetes in Nonobese Diabetic Mice. Journal of Immunology, 2022, 209, 465-475.	0.4	7
6	Repurposing the cardiac glycoside digoxin to stimulate myelin regeneration in <scp>chemicallyâ€induced</scp> and <scp>immuneâ€mediated</scp> mouse models of multiple sclerosis. Glia, 2022, 70, 1950-1970.	2.5	7
7	Interprofessional collaboration between health professional learners when breaking bad news: a scoping review protocol. JBI Evidence Synthesis, 2021, 19, 2032-2039.	0.6	2
8	Novel delivery mechanisms for antigen-specific immunotherapy. Current Opinion in Endocrinology, Diabetes and Obesity, 2021, Publish Ahead of Print, 404-410.	1.2	2
9	TAK-101 Nanoparticles Induce Cluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology, 2021, 161, 66-80.e8.	0.6	88
10	ZEB1 promotes pathogenic Th1 and Th17 cell differentiation in multiple sclerosis. Cell Reports, 2021, 36, 109602.	2.9	22
11	Targeting CD38-dependent NAD+ metabolism to mitigate multiple organ fibrosis. IScience, 2021, 24, 101902.	1.9	36
12	Can Immune Tolerance Be Re-established in Neuromyelitis Optica?. Frontiers in Neurology, 2021, 12, 783304.	1.1	2
13	Tolerance Induced by Antigen-Loaded PLG Nanoparticles Affects the Phenotype and Trafficking of Transgenic CD4+ and CD8+ T Cells. Cells, 2021, 10, 3445.	1.8	4
14	Experimental Autoimmune Encephalomyelitis in the Mouse. Current Protocols, 2021, 1, e300.	1.3	11
15	Microbial Infection as a Trigger of T-Cell Autoimmunity. , 2020, , 363-374.		5
16	Intravenous Immunomodulatory Nanoparticle Treatment for Traumatic Brain Injury. Annals of Neurology, 2020, 87, 442-455.	2.8	29
17	Rejection of xenogeneic porcine islets in humanized mice is characterized by graftâ€infiltrating Th17 cells and activated B cells. American Journal of Transplantation, 2020, 20, 1538-1550.	2.6	8
18	Monocytes prime autoreactive T cells after myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H116-H123.	1.5	15

#	Article	IF	CITATIONS
19	Modulating lung immune cells by pulmonary delivery of antigen-specific nanoparticles to treat autoimmune disease. Science Advances, 2020, 6, .	4.7	38
20	Pre-clinical and Clinical Implications of "Inside-Out―vs. "Outside-In―Paradigms in Multiple Sclerosis Etiopathogenesis. Frontiers in Cellular Neuroscience, 2020, 14, 599717.	1.8	46
21	Engineered immunological niches to monitor disease activity and treatment efficacy in relapsing multiple sclerosis. Nature Communications, 2020, 11, 3871.	5.8	9
22	Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Frontiers in Immunology, 2020, 11, 571897.	2.2	12
23	Antibody targeting of B7-H4 enhances the immune response in urothelial carcinoma. Oncolmmunology, 2020, 9, 1744897.	2.1	25
24	Herpesvirus Entry Mediator Binding Partners Mediate Immunopathogenesis of Ocular Herpes Simplex Virus 1 Infection. MBio, 2020, 11, .	1.8	7
25	Immunosuppressive IDO in Cancer: Mechanisms of Action, Animal Models, and Targeting Strategies. Frontiers in Immunology, 2020, 11, 1185.	2.2	131
26	Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. Gastroenterology, 2020, 158, 1667-1681.e12.	0.6	87
27	Nanocatalytic activity of clean-surfaced, faceted nanocrystalline gold enhances remyelination in animal models of multiple sclerosis. Scientific Reports, 2020, 10, 1936.	1.6	55
28	Canadian medical schools' preclerkship paediatric clinical skills curricula: How can we improve?. Paediatrics and Child Health, 2020, 25, 505-510.	0.3	1
29	Methodology for in vitro Assessment of Human T Cell Activation and Blockade. Bio-protocol, 2020, 10, e3644.	0.2	0
30	Long-term tolerance of islet allografts in nonhuman primates induced by apoptotic donor leukocytes. Nature Communications, 2019, 10, 3495.	5.8	43
31	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
32	Design of biodegradable nanoparticles to modulate phenotypes of antigen-presenting cells for antigen-specific treatment of autoimmune disease. Biomaterials, 2019, 222, 119432.	5.7	46
33	Nanoparticles Containing an Insulin–ChgA Hybrid Peptide Protect from Transfer of Autoimmune Diabetes by Shifting the Balance between Effector T Cells and Regulatory T Cells. Journal of Immunology, 2019, 203, 48-57.	0.4	53
34	Designing drug-free biodegradable nanoparticles to modulate inflammatory monocytes and neutrophils for ameliorating inflammation. Journal of Controlled Release, 2019, 300, 185-196.	4.8	68
35	Sephin1, which prolongs the integrated stress response, is a promising therapeutic for multiple sclerosis. Brain, 2019, 142, 344-361.	3.7	55
36	Overcoming challenges in treating autoimmuntity: Development of tolerogenic immune-modifying nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 18, 282-291.	1.7	67

#	Article	IF	CITATIONS
37	Peripherally derived T regulatory and γδT cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. Journal of Experimental Medicine, 2018, 215, 1169-1186.	4.2	80
38	ILDR2-Fc Is a Novel Regulator of Immune Homeostasis and Inducer of Antigen-Specific Immune Tolerance. Journal of Immunology, 2018, 200, 2013-2024.	0.4	17
39	ILDR2 Is a Novel B7-like Protein That Negatively Regulates T Cell Responses. Journal of Immunology, 2018, 200, 2025-2037.	0.4	26
40	Tolerogenic Ag-PLG nanoparticles induce tregs to suppress activated diabetogenic CD4 and CD8 T cells. Journal of Autoimmunity, 2018, 89, 112-124.	3.0	87
41	Conjugation of Transforming Growth Factor Beta to Antigen-Loaded Poly(lactide- <i>co</i> -glycolide) Nanoparticles Enhances Efficiency of Antigen-Specific Tolerance. Bioconjugate Chemistry, 2018, 29, 813-823.	1.8	66
42	The Use of Biodegradable Nanoparticles for Tolerogenic Therapy of Allergic Inflammation. Methods in Molecular Biology, 2018, 1799, 353-358.	0.4	2
43	B7-H4 Modulates Regulatory CD4+ T Cell Induction and Function via Ligation of a Semaphorin 3a/Plexin A4/Neuropilin-1 Complex. Journal of Immunology, 2018, 201, 897-907.	0.4	34
44	APOBEC-mediated mutagenesis in urothelial carcinoma is associated with improved survival, mutations in DNA damage response genes, and immune response. Oncotarget, 2018, 9, 4537-4548.	0.8	92
45	Potential targeting of B7â€H4 for the treatment of cancer. Immunological Reviews, 2017, 276, 40-51.	2.8	103
46	Peptide-Conjugated Nanoparticles Reduce Positive Co-stimulatory Expression and T Cell Activity to Induce Tolerance. Molecular Therapy, 2017, 25, 1676-1685.	3.7	79
47	In vivo reprogramming of immune cells: Technologies for induction of antigen-specific tolerance. Advanced Drug Delivery Reviews, 2017, 114, 240-255.	6.6	95
48	IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nature Communications, 2017, 8, 15508.	5.8	71
49	Intravenous immune-modifying nanoparticles as a therapy for spinal cord injury in mice. Neurobiology of Disease, 2017, 108, 73-82.	2.1	48
50	Best practice interprofessional stroke care collaboration and simulation: The student perspective. Journal of Interprofessional Care, 2017, 31, 793-796.	0.8	21
51	Tolerogenic Nanoparticles to Treat Islet Autoimmunity. Current Diabetes Reports, 2017, 17, 84.	1.7	23
52	Pre-metastatic cancer exosomes induce immune surveillance by patrolling monocytes at the metastatic niche. Nature Communications, 2017, 8, 1319.	5.8	237
53	Targeting the GM-CSF receptor for the treatment of CNS autoimmunity. Journal of Autoimmunity, 2017, 84, 1-11.	3.0	53
54	An antigen-encapsulating nanoparticle platform for TH1/17 immune tolerance therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 191-200.	1.7	89

#	Article	IF	CITATIONS
55	Pak2 is essential for the function of Foxp3+ regulatory T cells through maintaining a suppressive Treg phenotype. Scientific Reports, 2017, 7, 17097.	1.6	14
56	Murine Corneal Inflammation and Nerve Damage After Infection With HSV-1 Are Promoted by HVEM and Ameliorated by Immune-Modifying Nanoparticle Therapy. , 2017, 58, 282.		19
57	Controlled Delivery of Single or Multiple Antigens in Tolerogenic Nanoparticles Using Peptide-Polymer Bioconjugates. Molecular Therapy, 2017, 25, 1655-1664.	3.7	79
58	Immune Tolerance for Autoimmune Disease and Cell Transplantation. Annual Review of Biomedical Engineering, 2016, 18, 181-205.	5.7	66
59	Biodegradable antigen-associated PLG nanoparticles tolerize Th2-mediated allergic airway inflammation pre- and postsensitization. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5059-5064.	3.3	78
60	HIF-2α in Resting Macrophages Tempers Mitochondrial Reactive Oxygen Species To Selectively Repress MARCO-Dependent Phagocytosis. Journal of Immunology, 2016, 197, 3639-3649.	0.4	21
61	Loss of galectinâ€3 decreases the number of immune cells in the subventricular zone and restores proliferation in a viral model of multiple sclerosis. Glia, 2016, 64, 105-121.	2.5	29
62	Pattern of CXCR7 Gene Expression in Mouse Brain Under Normal and Inflammatory Conditions. Journal of NeuroImmune Pharmacology, 2016, 11, 26-35.	2.1	39
63	Cutting Edge: CD99 Is a Novel Therapeutic Target for Control of T Cell–Mediated Central Nervous System Autoimmune Disease. Journal of Immunology, 2016, 196, 1443-1448.	0.4	20
64	Cutting Edge: MicroRNA-223 Regulates Myeloid Dendritic Cell–Driven Th17 Responses in Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2016, 196, 1455-1459.	0.4	45
65	Oligodendrocyte death results in immune-mediated CNS demyelination. Nature Neuroscience, 2016, 19, 65-74.	7.1	145
66	Tolerance induction using nanoparticles bearing HY peptides in bone marrow transplantation. Biomaterials, 2016, 76, 1-10.	5.7	46
67	Preemptive Tolerogenic Delivery of Donor Antigens for Permanent Allogeneic Islet Graft Protection. Cell Transplantation, 2015, 24, 1155-1165.	1.2	25
68	Deficient Natural Killer Dendritic Cell Responses Underlay the Induction of Theiler's Virus-Induced Autoimmunity. MBio, 2015, 6, e01175.	1.8	9
69	Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease (TMEV-IDD) and Autoimmunity. , 2015, , 465-476.		1
70	<scp>IL</scp> â€17 <scp>A</scp> activates <scp>ERK</scp> 1/2 and enhances differentiation of oligodendrocyte progenitor cells. Glia, 2015, 63, 768-779.	2.5	36
71	Harnessing nanoparticles for immune modulation. Trends in Immunology, 2015, 36, 419-427.	2.9	190
72	Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature, 2015, 522, 216-220.	13.7	336

5

 $\mathbf{31}$

#	Article	IF	CITATIONS
73	Cellular and molecular targeting for nanotherapeutics in transplantation tolerance. Clinical Immunology, 2015, 160, 14-23.	1.4	24
74	Pharmaceutical integrated stress response enhancement protects oligodendrocytes and provides a potential multiple sclerosis therapeutic. Nature Communications, 2015, 6, 6532.	5.8	87
75	Interleukin-7 is required for CD4 + T cell activation and autoimmune neuroinflammation. Clinical Immunology, 2015, 161, 260-269.	1.4	32
76	ISDN2014_0176: Characterizing oligodendroglial populations in development and disease using flow cytometry. International Journal of Developmental Neuroscience, 2015, 47, 51-52.	0.7	0
77	Characterization of Oligodendroglial Populations in Mouse Demyelinating Disease Using Flow Cytometry: Clues for MS Pathogenesis. PLoS ONE, 2014, 9, e107649.	1.1	45
78	Quantification of particle-conjugated or particle-encapsulated peptides on interfering reagent backgrounds. BioTechniques, 2014, 57, 39-44.	0.8	18
79	Impaired selectin-dependent leukocyte recruitment induces T-cell exhaustion and prevents chronic allograft vasculopathy and rejection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12145-12150.	3.3	34
80	Molecular control of monocyte development. Cellular Immunology, 2014, 291, 16-21.	1.4	56
81	Targeted immunomodulation using antigen onjugated nanoparticles. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2014, 6, 298-315.	3.3	37
82	Infectious Triggers of T Cell Autoimmunity. , 2014, , 263-274.		3
83	Therapeutic Inflammatory Monocyte Modulation Using Immune-Modifying Microparticles. Science Translational Medicine, 2014, 6, 219ra7.	5.8	284
84	Effects of exercise in experimental autoimmune encephalomyelitis (an animal model of multiple) Tj ETQq0 0 0 rg	BT /Overlc 1.1	ock 10 Tf 50 3
85	The experimental autoimmune encephalomyelitis (EAE) model of MS. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 122, 173-189.	1.0	348
86	Experimental Autoimmune Encephalomyelitis in Mice. Methods in Molecular Biology, 2014, 1304, 145-160.	0.4	58
87	γδT cell subsets play opposing roles in regulating experimental autoimmune encephalomyelitis. Cellular Immunology, 2014, 290, 39-51.	1.4	71
88	A Biodegradable Nanoparticle Platform for the Induction of Antigen-Specific Immune Tolerance for Treatment of Autoimmune Disease. ACS Nano, 2014, 8, 2148-2160.	7.3	256
89	Viruses, Autoimmunity, and Cancer. , 2014, , 509-520.		0

90	Transient B-Cell Depletion Combined With Apoptotic Donor Splenocytes Induces Xeno-Specific T- and B-Cell Tolerance to Islet Xenografts. Diabetes, 2013, 62, 3143-3150.	0.3
----	--	-----

#	Article	IF	CITATIONS
91	Targeting the B7 Family of Co-Stimulatory Molecules. BioDrugs, 2013, 27, 1-13.	2.2	42
92	Virus infection, antiviral immunity, and autoimmunity. Immunological Reviews, 2013, 255, 197-209.	2.8	238
93	Exploiting Apoptosis for Therapeutic Tolerance Induction. Journal of Immunology, 2013, 191, 5341-5346.	0.4	73
94	B7-H4lg inhibits mouse and human T-cell function and treats EAE via IL-10/Treg-dependent mechanisms. Journal of Autoimmunity, 2013, 44, 71-81.	3.0	49
95	High-mobility group box 1 protein (HMCB1) neutralization ameliorates experimental autoimmune encephalomyelitis. Journal of Autoimmunity, 2013, 43, 32-43.	3.0	55
96	Antigen-Specific Tolerance by Autologous Myelin Peptide–Coupled Cells: A Phase 1 Trial in Multiple Sclerosis. Science Translational Medicine, 2013, 5, 188ra75.	5.8	262
97	Inducing immune tolerance: a focus on Type 1 diabetes mellitus. Diabetes Management, 2013, 3, 415-426.	0.5	20
98	Immune mechanisms in epileptogenesis. Frontiers in Cellular Neuroscience, 2013, 7, 195.	1.8	76
99	Antigen-Specific Tolerance in Immunotherapy of Th2-Associated Allergic Diseases. Critical Reviews in Immunology, 2013, 33, 389-414.	1.0	45
100	Ethylenecarbodiimide-Fixed Donor Splenocyte Infusions Differentially Target Direct and Indirect Pathways of Allorecognition for Induction of Transplant Tolerance. Journal of Immunology, 2012, 189, 804-812.	0.4	62
101	Epstein-Barr virus latent membrane protein 2A exacerbates experimental autoimmune encephalomyelitis and enhances antigen presentation function. Scientific Reports, 2012, 2, 353.	1.6	12
102	Microparticles bearing encephalitogenic peptides induce T-cell tolerance and ameliorate experimental autoimmune encephalomyelitis. Nature Biotechnology, 2012, 30, 1217-1224.	9.4	351
103	Pathogenesis of NOD diabetes is initiated by reactivity to the insulin B chain 9-23 epitope and involves functional epitope spreading. Journal of Autoimmunity, 2012, 39, 347-353.	3.0	97
104	Mouse Models of Multiple Sclerosis: Experimental Autoimmune Encephalomyelitis and Theiler's Virus-Induced Demyelinating Disease. Methods in Molecular Biology, 2012, 900, 381-401.	0.4	159
105	Molecular mimicry as an inducing trigger for CNS autoimmune demyelinating disease. Immunological Reviews, 2012, 245, 227-238.	2.8	93
106	Tolerance Strategies Employing Antigen-Coupled Apoptotic Cells and Carboxylated PLG Nanoparticles for the Treatment of Type 1 Diabetes. Review of Diabetic Studies, 2012, 9, 319-327.	0.5	35
107	Cytokine control of inflammation and repair in the pathology of multiple sclerosis. Yale Journal of Biology and Medicine, 2012, 85, 447-68.	0.2	48
108	Antigen-Fixed Leukocytes Tolerize Th2 Responses in Mouse Models of Allergy. Journal of Immunology, 2011, 187, 5090-5098.	0.4	71

#	Article	IF	CITATIONS
109	The role of antigen presenting cells in multiple sclerosis. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 265-274.	1.8	211
110	Virus expanded regulatory T cells control disease severity in the Theiler's virus mouse model of MS. Journal of Autoimmunity, 2011, 36, 142-154.	3.0	59
111	CNS Expression of B7-H1 Regulates Pro-Inflammatory Cytokine Production and Alters Severity of Theiler's Virus-Induced Demyelinating Disease. PLoS ONE, 2011, 6, e18548.	1.1	34
112	Permanent protection of PLG scaffold transplanted allogeneic islet grafts in diabetic mice treated with ECDI-fixed donor splenocyte infusions. Biomaterials, 2011, 32, 4517-4524.	5.7	53
113	Tolerance Induced by Apoptotic Antigen-Coupled Leukocytes Is Induced by PD-L1+ and IL-10–Producing Splenic Macrophages and Maintained by T Regulatory Cells. Journal of Immunology, 2011, 187, 2405-2417.	0.4	182
114	A critical role for virus-specific CD8+ CTLs in protection from Theiler's virus-induced demyelination in disease-susceptible SJL mice. Virology, 2010, 402, 102-111.	1.1	23
115	Immunotherapy of Type 1 Diabetes: Where Are We and Where Should We Be Going?. Immunity, 2010, 32, 488-499.	6.6	150
116	NLRP3 Plays a Critical Role in the Development of Experimental Autoimmune Encephalomyelitis by Mediating Th1 and Th17 Responses. Journal of Immunology, 2010, 185, 974-981.	0.4	345
117	TGF-β–Induced Myelin Peptide-Specific Regulatory T Cells Mediate Antigen-Specific Suppression of Induction of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2010, 184, 6629-6636.	0.4	42
118	Ethylenecarbodiimide-Treated Splenocytes Carrying Male CD4 Epitopes Confer Histocompatability Y Chromosome Antigen Transplant Protection by Inhibiting CD154 Upregulation. Journal of Immunology, 2010, 185, 3326-3336.	0.4	22
119	Experimental Autoimmune Encephalomyelitis in the Mouse. Current Protocols in Immunology, 2010, 88, Unit 15.1.	3.6	142
120	The Innate Immune Response Affects the Development of the Autoimmune Response in Theiler's Virus-Induced Demyelinating Disease. Journal of Immunology, 2009, 182, 5712-5722.	0.4	30
121	Prospects for Antigen-Specific Tolerance Based Therapies for the Treatment of Multiple Sclerosis. Results and Problems in Cell Differentiation, 2009, 51, 217-235.	0.2	29
122	The Contribution of γδ T Cells to the Pathogenesis of EAE and MS. Current Molecular Medicine, 2009, 9, 15-22.	0.6	60
123	Antiviral immune responses: triggers of or triggered by autoimmunity?. Nature Reviews Immunology, 2009, 9, 246-258.	10.6	410
124	Molecular mechanisms of T ell receptor and costimulatory molecule ligation/blockade in autoimmune disease therapy. Immunological Reviews, 2009, 229, 337-355.	2.8	115
125	Cross-Linking of CD80 on CD4+ T Cells Activates a Calcium-Dependent Signaling Pathway. Journal of Immunology, 2009, 182, 766-773.	0.4	9
126	Astrocytes in multiple sclerosis: A product of their environment. Cellular and Molecular Life Sciences, 2008, 65, 2702-20.	2.4	279

#	Article	IF	CITATIONS
127	PDâ€1 ligands expressed on myeloidâ€derived APC in the CNS regulate Tâ€cell responses in EAE. European Journal of Immunology, 2008, 38, 2706-2717.	1.6	103
128	Pro-inflammatory functions of astrocytes correlate with viral clearance and strain-dependent protection from TMEV-induced demyelinating disease. Virology, 2008, 375, 24-36.	1.1	26
129	Differential induction of experimental autoimmune encephalomyelitis by myelin basic protein molecular mimics in mice humanized for HLA-DR2 and an MBP85–99-specific T cell receptor. Journal of Autoimmunity, 2008, 31, 399-407.	3.0	15
130	Clial toll-like receptor signaling in central nervous system infection and autoimmunity. Brain, Behavior, and Immunity, 2008, 22, 140-147.	2.0	150
131	Intrinsic and Induced Regulation of the Age-Associated Onset of Spontaneous Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2008, 181, 4638-4647.	0.4	41
132	ECDI-fixed allogeneic splenocytes induce donor-specific tolerance for long-term survival of islet transplants via two distinct mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 14527-14532.	3.3	151
133	Cutting Edge: Central Nervous System Plasmacytoid Dendritic Cells Regulate the Severity of Relapsing Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2008, 180, 6457-6461.	0.4	132
134	Endoplasmic reticulum stress response as a potential therapeutic target in multiple sclerosis. Therapy: Open Access in Clinical Medicine, 2008, 5, 631-640.	0.2	17
135	Regulation of Experimental Autoimmune Encephalomyelitis (EAE) by CD4+ CD25+ Regulatory T Cells. Novartis Foundation Symposium, 2008, , 45-54.	1.2	34
136	Therapeutic Blockade of T- Cell Antigen Receptor Signal Transduction and Costimulation in Autoimmune Disease. Advances in Experimental Medicine and Biology, 2008, 640, 234-251.	0.8	11
137	Peripheral Tolerance Induction Using Ethylenecarbodiimide-Fixed APCs Uses both Direct and Indirect Mechanisms of Antigen Presentation for Prevention of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2007, 178, 2212-2220.	0.4	108
138	Interferon-Â-Oligodendrocyte Interactions in the Regulation of Experimental Autoimmune Encephalomyelitis. Journal of Neuroscience, 2007, 27, 2013-2024.	1.7	127
139	Molecular Mimics Can Induce Novel Self Peptide-Reactive CD4+ T Cell Clonotypes in Autoimmune Disease. Journal of Immunology, 2007, 179, 6604-6612.	0.4	13
140	T-cell response dynamics in animal models of multiple sclerosis: implications for immunotherapies. Expert Review of Clinical Immunology, 2007, 3, 57-72.	1.3	8
141	CCR2 Regulates Development of Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease. Viral Immunology, 2007, 20, 19-33.	0.6	28
142	Differential Outcome of Tolerance Induction in Naive versus Activated Theiler's Virus Epitope-Specific CD8 + Cytotoxic T Cells. Journal of Virology, 2007, 81, 6584-6593.	1.5	17
143	Experimental Autoimmune Encephalomyelitis in the Mouse. Current Protocols in Immunology, 2007, 77, Unit 15.1.	3.6	213
144	Distinct roles of protein kinase R and toll-like receptor 3 in the activation of astrocytes by viral stimuli. Glia, 2007, 55, 239-252,	2.5	65

#	Article	IF	CITATIONS
145	Arresting autoimmunity by blocking \hat{l}^2 -arrestin 1. Nature Immunology, 2007, 8, 791-792.	7.0	8
146	CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE. Nature Immunology, 2007, 8, 172-180.	7.0	410
147	Antigen-specific tolerance strategies for the prevention and treatment of autoimmune disease. Nature Reviews Immunology, 2007, 7, 665-677.	10.6	252
148	Cross-reactivity between peptide mimics of the immunodominant myelin proteolipid protein epitope PLP139-151: Comparison of peptide priming in CFA vs. viral delivery. Journal of Neuroimmunology, 2007, 186, 5-18.	1.1	8
149	Antigen Presentation in the CNS by Myeloid Dendritic Cells Drives Progression of Relapsing Experimental Autoimmune Encephalomyelitis. Annals of the New York Academy of Sciences, 2007, 1103, 179-191.	1.8	131
150	The integrated stress response prevents demyelination by protecting oligodendrocytes against immune-mediated damage. Journal of Clinical Investigation, 2007, 117, 448-456.	3.9	166
151	Immunopathological mechanisms in multiple sclerosis. Drug Discovery Today Disease Mechanisms, 2006, 3, 177-184.	0.8	2
152	Multi-peptide coupled-cell tolerance ameliorates ongoing relapsing EAE associated with multiple pathogenic autoreactivities. Journal of Autoimmunity, 2006, 27, 218-231.	3.0	86
153	CNS dendritic cells: Critical participants in CNS inflammation?. Neurochemistry International, 2006, 49, 195-203.	1.9	88
154	Structural requirements for initiation of cross-reactivity and CNS autoimmunity with a PLP139–151 mimic peptide derived from murine hepatitis virus. European Journal of Immunology, 2006, 36, 2671-2680.	1.6	16
155	Cutting Edge: Anti-CD25 Monoclonal Antibody Injection Results in the Functional Inactivation, Not Depletion, of CD4+CD25+ T Regulatory Cells. Journal of Immunology, 2006, 176, 3301-3305.	0.4	296
156	Mechanisms of Immunopathology in Murine Models of Central Nervous System Demyelinating Disease. Journal of Immunology, 2006, 176, 3293-3298.	0.4	101
157	CD4+ T Cell Expressed CD80 Regulates Central Nervous System Effector Function and Survival during Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2006, 177, 2948-2958.	0.4	25
158	Innate and Adaptive Immune Responses of the Central Nervous System. Critical Reviews in Immunology, 2006, 26, 149-188.	1.0	159
159	Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nature Medicine, 2005, 11, 335-339.	15.2	608
160	CD28 regulates glucocorticoid-induced TNF receptor family-related gene expression on CD4+ T cells via IL-2-dependent mechanisms. Cellular Immunology, 2005, 235, 56-64.	1.4	27
161	Differential activation of astrocytes by innate and adaptive immune stimuli. Glia, 2005, 49, 360-374.	2.5	328
162	Inhibitors of Î ³ -secretase block in vivo and in vitro T helper type 1 polarization by preventing Notch upregulation of Tbx21. Nature Immunology, 2005, 6, 680-688.	7.0	252

#	Article	IF	CITATIONS
163	Therapeutic Blockade of TCR Signal Transduction and Co-Stimulation in Autoimmune Disease. Inflammation and Allergy: Drug Targets, 2005, 4, 205-216.	3.1	20
164	Targeting the TCR: T-Cell Receptor and Peptide-Specific Tolerance–Based Strategies for Restoring Self-Tolerance in CNS Autoimmune Disease. International Reviews of Immunology, 2005, 24, 361-392.	1.5	15
165	Initiation and Exacerbation of Autoimmune Demyelination of the Central Nervous System via Virus-Induced Molecular Mimicry: Implications for the Pathogenesis of Multiple Sclerosis. Journal of Virology, 2005, 79, 8581-8590.	1.5	40
166	Treatment with Nonmitogenic Anti-CD3 Monoclonal Antibody Induces CD4+ T Cell Unresponsiveness and Functional Reversal of Established Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2005, 174, 4525-4534.	0.4	136
167	Viral Delivery of an Epitope from <i>Haemophilus influenzae</i> Induces Central Nervous System Autoimmune Disease by Molecular Mimicry. Journal of Immunology, 2005, 174, 907-917.	0.4	46
168	Differential induction of IgE-mediated anaphylaxis after soluble vs. cell-bound tolerogenic peptide therapy of autoimmune encephalomyelitis. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 9595-9600.	3.3	89
169	The Role of T Cells and the Innate Immune System in the Pathogenesis of Theiler's Virus Demyeliating Disease. , 2005, , 645-657.		3
170	Immunogenetics, Resistance, and Susceptibility to Theiler's Virus Infection. , 2005, , 629-644.		0
171	CTLA-4 Regulates Expansion and Differentiation of Th1 Cells Following Induction of Peripheral T Cell Tolerance. Journal of Immunology, 2004, 172, 7442-7450.	0.4	30
172	Cutting Edge: Ligation of the Glucocorticoid-Induced TNF Receptor Enhances Autoreactive CD4+ T Cell Activation and Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2004, 172, 4686-4690.	0.4	146
173	Microglia Initiate Central Nervous System Innate and Adaptive Immune Responses through Multiple TLRs. Journal of Immunology, 2004, 173, 3916-3924.	0.4	1,054
174	Immunotherapy Targeting the CD40/CD154 Costimulatory Pathway for Treatment of Autoimmune Disease. Autoimmunity, 2004, 37, 411-418.	1.2	26
175	Innate and adaptive immune requirements for induction of autoimmune demyelinating disease by molecular mimicry. Molecular Immunology, 2004, 40, 1103-1108.	1.0	43
176	A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. Journal of Clinical Investigation, 2004, 114, 1290-1298.	3.9	88
177	A viral epitope that mimics a self antigen can accelerate but not initiate autoimmune diabetes. Journal of Clinical Investigation, 2004, 114, 1290-1298.	3.9	73
178	Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler's virus model of multiple sclerosis. Journal of Neuroimmunology, 2003, 144, 68-79.	1.1	106
179	Efficient technique for immortalization of murine microglial cells relevant for studies in murine models of multiple sclerosis. Journal of Neuroscience Methods, 2003, 128, 33-43.	1.3	6
180	Role of ICAM-1 and P-selectin expression in the development and effector function of CD4+CD25+regulatory T cells. Journal of Autoimmunity, 2003, 21, 261-271.	3.0	24

#	Article	IF	CITATIONS
181	CD154 Blockade Results in Transient Reduction in Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease. Journal of Virology, 2003, 77, 2247-2250.	1.5	13
182	Regulation of experimental autoimmune encephalomyelitis (EAE) by CD4+CD25+ regulatory T cells. Novartis Foundation Symposium, 2003, 252, 45-52; discussion 52-4, 106-14.	1.2	13
183	Cutting Edge: CD4+CD25+ Regulatory T Cells Suppress Antigen-Specific Autoreactive Immune Responses and Central Nervous System Inflammation During Active Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2002, 169, 4712-4716.	0.4	687
184	Functional Activation of Myelin-Specific T Cells by Virus-Induced Molecular Mimicry. Journal of Immunology, 2002, 169, 2719-2726.	0.4	63
185	De Novo Central Nervous System Processing of Myelin Antigen Is Required for the Initiation of Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2002, 168, 4173-4183.	0.4	176
186	Differential abilities of central nervous system resident endothelial cells and astrocytes to serve as inducible antigen-presenting cells. Blood, 2002, 99, 3692-3701.	0.6	49
187	CD40/CD40L Interaction is Essential for the Induction of EAE in the Absence of CD28-Mediated Co-stimulation. Journal of Autoimmunity, 2002, 18, 83-94.	3.0	46
188	Epitope spreading and molecular mimicry as triggers of autoimmunity in the Theiler's virus-induced demyelinating disease model of multiple sclerosis. Autoimmunity Reviews, 2002, 1, 251-260.	2.5	80
189	Myelin-specific tolerance attenuates the progression of a virus-induced demyelinating disease: implications for the treatment of MS. Journal of Neuroimmunology, 2002, 123, 18-29.	1.1	38
190	Transient anti-CD154-mediated immunotherapy of ongoing relapsing experimental autoimmune encephalomyelitis induces long-term inhibition of disease relapses. Journal of Neuroimmunology, 2002, 129, 58-65.	1.1	37
191	The role of CTLA-4 in induction and maintenance of peripheral T cell tolerance. European Journal of Immunology, 2002, 32, 972-981.	1.6	98
192	Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nature Reviews Immunology, 2002, 2, 85-95.	10.6	781
193	Theiler's Virusâ€Mediated Autoimmunity. Annals of the New York Academy of Sciences, 2002, 958, 26-38.	1.8	35
194	Normal Th1 development following long-term therapeutic blockade of CD154-CD40 in experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2002, 109, 233-241.	3.9	19
195	Multiple Pathways to Induction of Virus-Induced Autoimmune Demyelination: Lessons from Theiler's Virus Infection. Journal of Autoimmunity, 2001, 16, 219-227.	3.0	64
196	Direct Activation of Innate and Antigen-Presenting Functions of Microglia following Infection with Theiler's Virus. Journal of Virology, 2001, 75, 9780-9789.	1.5	156
197	Virus-induced autoimmunity: Epitope spreading to myelin autoepitopes in theiler's virus infection of the central nervous system. Advances in Virus Research, 2001, 56, 199-217.	0.9	54
198	Prevention of Autoimmune Myocarditis Through the Induction of Antigen-Specific Peripheral Immune Tolerance. Circulation, 2001, 103, 1709-1714.	1.6	34

#	Article	IF	CITATIONS
199	CD8-deficient SJL mice display enhanced susceptibility to Theiler's virus infection and increased demyelinating pathology. Journal of NeuroVirology, 2001, 7, 409-420.	1.0	52
200	Prolonged Hya-Disparate Skin Graft Survival in Ethanol-Consuming Mice: Correlation With Impaired Delayed Hypersensitivity. Alcoholism: Clinical and Experimental Research, 2001, 25, 1542-1548.	1.4	8
201	Enhanced susceptibility to Theiler's virus-induced demyelinating disease in perforin-deficient mice. Journal of Neuroimmunology, 2001, 116, 125-135.	1.1	32
202	Development of Spontaneous Autoimmune Peripheral Polyneuropathy in B7-2–Deficient Nod Mice. Journal of Experimental Medicine, 2001, 194, 677-684.	4.2	201
203	Autoimmune Intervention by CD154 Blockade Prevents T Cell Retention and Effector Function in the Target Organ. Journal of Immunology, 2001, 166, 1547-1553.	0.4	32
204	Virus-Induced Autoimmunity: Potential Role of Viruses in Initiation, Perpetuation, and Progression of T-Cell–Mediated Autoimmune Disease. Viral Immunology, 2001, 14, 227-250.	0.6	125
205	A virus-induced molecular mimicry model of multiple sclerosis. Journal of Clinical Investigation, 2001, 108, 311-318.	3.9	155
206	CD8+ T cells from Theiler's virus-resistant BALB/cByJ mice downregulate pathogenic virus-specific CD4+ T cells. Journal of Neuroimmunology, 2000, 106, 43-52.	1.1	20
207	CTLA-4 downregulates epitope spreading and mediates remission in relapsing experimental autoimmune encephalomyelitis. Journal of Neuroimmunology, 2000, 109, 173-180.	1.1	53
208	Lymphocytes from mice chronically infected with Theiler's murine encephalomyelitis virus produce demyelination of organotypic cultures after stimulation with the major encephalitogenic epitope of myelin proteolipid protein. Epitope spreading in TMEV infection has functional activity. Journal of Neuroimmunology, 2000, 104, 79-84.	1.1	41
209	CD28 Costimulatory Blockade Exacerbates Disease Severity and Accelerates Epitope Spreading in a Virus-Induced Autoimmune Disease. Journal of Virology, 2000, 74, 8349-8357.	1.5	18
210	A Critical Role for B7/CD28 Costimulation in Experimental Autoimmune Encephalomyelitis: A Comparative Study Using Costimulatory Molecule-Deficient Mice and Monoclonal Antibody Blockade. Journal of Immunology, 2000, 164, 136-143.	0.4	136
211	Temporal Development of Autoreactive Th1 Responses and Endogenous Presentation of Self Myelin Epitopes by Central Nervous System-Resident APCs in Theiler's Virus-Infected Mice. Journal of Immunology, 2000, 165, 5304-5314.	0.4	117
212	Pathologic Role and Temporal Appearance of Newly Emerging Autoepitopes in Relapsing Experimental Autoimmune Encephalomyelitis. Journal of Immunology, 2000, 164, 670-678.	0.4	193
213	Fas-mediated apoptosis in clinical remissions of relapsing experimental autoimmune encephalomyelitis. Journal of Clinical Investigation, 2000, 105, 223-231.	3.9	115
214	Central nervous system chemokine expression during Theiler's virus-induced demyelinating disease. Journal of NeuroVirology, 1999, 5, 635-642.	1.0	76
215	The role of protective CD8+ T cells in resistance of BALB/c mice to Theiler's murine encephalomyelitis virus-induced demyelinating disease: regulatory vs. lytic. Journal of Neuroimmunology, 1999, 98, 136-146.	1.1	10
216	Mechanisms of immunotherapeutic intervention by anti-CD40L (CD154) antibody in an animal model of multiple sclerosis. Journal of Clinical Investigation, 1999, 103, 281-290.	3.9	199

#	Article	IF	CITATIONS
217	Endogenous presentation of self myelin epitopes by CNS-resident APCs in Theiler's virus–infected mice. Journal of Clinical Investigation, 1999, 104, 599-610.	3.9	123
218	The functional significance of epitope spreading and its regulation by co-stimulatory molecules. Immunological Reviews, 1998, 164, 63-72.	2.8	159
219	Targeting the B7/CD28:CTLA-4 costimulatory system in CNS autoimmune disease. Journal of Neuroimmunology, 1998, 89, 10-18.	1.1	49
220	Regulation of the Effector Stages of Experimental Autoimmune Encephalomyelitis via Neuroantigen-Specific Tolerance Induction. III. A Role for Anergy/Deletion*. Autoimmunity, 1998, 27, 13-28.	1.2	16
221	Effect of Disease Stage on Clinical Outcome After Syngeneic Bone Marrow Transplantation for Relapsing Experimental Autoimmune Encephalomyelitis. Blood, 1998, 91, 2609-2616.	0.6	84
222	Characterization of and Functional Antigen Presentation by Central Nervous System Mononuclear Cells from Mice Infected with Theiler's Murine Encephalomyelitis Virus. Journal of Virology, 1998, 72, 7762-7771.	1.5	46
223	Treatment with intact anti-B7-1 mAb during disease remission enhances epitope spreading and exacerbates relapses in R-EAE. Journal of Neuroimmunology, 1997, 79, 113-118.	1.1	43
224	Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nature Medicine, 1997, 3, 1133-1136.	15.2	548
225	Experimental Autoimmune Encephalomyelitis in the Mouse. Current Protocols in Immunology, 1996, 19, 15.1.1.	3.6	1
226	Epitope spreading. Current Opinion in Immunology, 1996, 8, 831-836.	2.4	328
227	Two models of multiple sclerosis: Experimental allergic encephalomyelitis (EAE) and theiler's murine encephalomyelitis virus (TMEV) infection. A pathological and immunological comparison. Microscopy Research and Technique, 1995, 32, 215-229.	1.2	98
228	Evolution of the T-Cell Repertoire during the Course of Experimental Immune-Mediated Demyelinating Diseases. Immunological Reviews, 1995, 144, 225-244.	2.8	159
229	Mutation of a major histocompatibility class I locus, H-2D, leads to an increased virus burden and disease susceptibility in Theiler's virus-induced demyelinating disease. Journal of NeuroVirology, 1995, 1, 138-144.	1.0	30
230	Blockade of CD28/B7-1 interaction prevents epitope spreading and clinical relapses of murine EAE. Immunity, 1995, 3, 739-745.	6.6	306
231	Anergy in vivo: down-regulation of antigen-specific CD4+ Th1 but not Th2 cytokine responses. International Immunology, 1994, 6, 721-730.	1.8	84
232	The immunopathogenesis and regulation of T-cell-mediated demyelinating diseases. Trends in Immunology, 1994, 15, 356-361.	7.5	173
233	Split tolerance of Thl and Th2 cells in tolerance to Theiler's murine encephalomyelitis virus. European Journal of Immunology, 1993, 23, 46-55.	1.6	115
234	Class I-deficient resistant mice intracerebrally inoculated with Theiler's virus show an increased T cell response to viral antigens and susceptibility to demyelination. European Journal of Immunology, 1993, 23, 2287-2293.	1.6	123

#	Article	IF	CITATIONS
235	Antigen-Specific Tolerance as a Therapy for Experimental Autoimmune Encephalomyelitis. International Reviews of Immunology, 1992, 9, 203-222.	1.5	44
236	Antigen-specific inhibition of the adoptive transfer of experimental autoimmune enceophalomyelitis in Lewis rats. Journal of Neuroimmunology, 1992, 37, 177-189.	1.1	25
237	Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. Journal of Neuroimmunology, 1992, 38, 229-240.	1.1	216
238	Induction of allograft tolerance to the H-Y antigen in adult C57BL/6 mice: Differential effects on delayed-type hypersensitivity and cytolytic T-lymphocyte activity. Cellular Immunology, 1990, 125, 225-234.	1.4	11
239	Monocytes/macrophages isolated from the mouse central nervous system contain infectious Theiler's murine encephalomyelitis virus (TMEV). Virology, 1990, 176, 244-254.	1.1	186
240	Class II-restricted T cell responses in Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease. Journal of Neuroimmunology, 1990, 26, 9-23.	1.1	81
241	Fine Specificity of T-Cell-Mediated Immune Responses of Susceptible and Resistant Strains in Theiler's Murine Encephalomyelitis Virus-Induced Demyelinating Disease. Annals of the New York Academy of Sciences, 1988, 540, 674-677.	1.8	1
242	The Theiler's murine encephalomyelitis virus (TMEV) model for multiple sclerosis shows a strong influence of the murine equivalents of HLA-A, B, and C. Journal of Neuroimmunology, 1987, 15, 121-135.	1.1	47
243	Class II-restricted T cell responses in Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease. II. Survey of host immune responses and central nervous system virus titers in inbred mouse strains. Microbial Pathogenesis, 1987, 3, 327-337.	1.3	96
244	Binding of ovalbumin to mouse spleen cells with and without carbodiimide. Journal of Immunological Methods, 1979, 28, 361-368.	0.6	9