
Takashi Kita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6967735/publications.pdf Version: 2024-02-01

Τλκλομι Κιτλ

#	Article	IF	CITATIONS
1	Intermediate band solar cells: Recent progress and future directions. Applied Physics Reviews, 2015, 2, 021302.	11.3	314
2	Increase in photocurrent by optical transitions via intermediate quantum states in direct-doped InAs/GaNAs strain-compensated quantum dot solar cell. Journal of Applied Physics, 2011, 109, .	2.5	216
3	Temperature Dependence of GaAs1-xBixBand Gap Studied by Photoreflectance Spectroscopy. Japanese Journal of Applied Physics, 2003, 42, 371-374.	1.5	184
4	Grain-size effects on dielectric phase transition of BaTiO3 ceramics. Solid State Communications, 1987, 62, 765-767.	1.9	155
5	Valence-band splitting in orderedGa0.5In0.5P studied by temperature-dependent photoluminescence polarization. Physical Review B, 1992, 45, 6637-6642.	3.2	98
6	Two-step photon up-conversion solar cells. Nature Communications, 2017, 8, 14962.	12.8	88
7	Epitaxial growth of LiNbO3‣iTaO3thin films on Al2O3. Journal of Applied Physics, 1987, 62, 2989-2993.	2.5	82
8	Polarization-Independent Photoluminescence from Columnar InAs/GaAs Self-Assembled Quantum Dots. Japanese Journal of Applied Physics, 2002, 41, L1143-L1145.	1.5	79
9	Artificial control of optical gain polarization by stacking quantum dot layers. Applied Physics Letters, 2006, 88, 211106.	3.3	75
10	Control of optical polarization anisotropy in edge emitting luminescence of InAs/GaAs self-assembled quantum dots. Applied Physics Letters, 2004, 84, 1820-1822.	3.3	54
11	Photoreflectance characterization of surface Fermi level in asâ€grown GaAs(100). Journal of Applied Physics, 1990, 68, 5309-5313.	2.5	49
12	Optical and magnetic properties in epitaxial GdN thin films. Physical Review B, 2011, 83, .	3.2	49
13	One-dimensional miniband formation in closely stacked InAs/GaAs quantum dots. Physical Review B, 2013, 87, .	3.2	47
14	Raman and xâ€ray scattering from ultrafine semiconductor particles. Journal of Applied Physics, 1987, 61, 969-971.	2.5	45
15	Experimental and atomistic theoretical study of degree of polarization from multilayer InAs/GaAs quantum dot stacks. Physical Review B, 2011, 84, .	3.2	45
16	Zone-Folding Effects on Phonons in GaAs-AlAs Superlattices. Japanese Journal of Applied Physics, 1985, 24, 1331-1334.	1.5	43
17	Effects of absorption coefficients and intermediate-band filling in InAs/GaAs quantum dot solar cells. Applied Physics Letters, 2010, 97, .	3.3	43
18	Photoluminescence characteristics of quantum dots with electronic states interconnected along growth direction. Journal of Applied Physics, 2008, 103, .	2.5	42

#	Article	IF	CITATIONS
19	Electron tomography of embedded semiconductor quantum dot. Applied Physics Letters, 2008, 92, .	3.3	42
20	Transient photoconductivity responses in amorphous In-Ga-Zn-O films. Journal of Applied Physics, 2012, 112, 053715.	2.5	42
21	Raman study of GaAsâ€InxAl1â^'xAs strainedâ€layer superlattices. Journal of Applied Physics, 1985, 58, 4342-4345.	2.5	40
22	Electroreflectance polarization study of valenceâ€band states in ordered Ga0.5In0.5P. Applied Physics Letters, 1993, 63, 512-514.	3.3	39
23	Vertical-geometry all-optical switches based on InAs/GaAs quantum dots in a cavity. Applied Physics Letters, 2009, 95, 021109.	3.3	39
24	Multidirectional Observation of Photoluminescence Polarization Anisotropy in Closely Stacked InAs/GaAs Quantum Dots. Applied Physics Express, 2011, 4, 062001.	2.4	39
25	Photoreflectance characterization of built-in potential in MBE-produced As-grown GaAs surface. , 1990, , .		37
26	Bound exciton states of isoelectronic centers in GaAs:N grown by an atomically controlled doping technique. Physical Review B, 2006, 74, .	3.2	35
27	Two-step photon absorption in InAs/GaAs quantum-dot superlattice solar cells. Physical Review B, 2015, 91, .	3.2	35
28	Polarization control of electroluminescence from vertically stacked InAs/GaAs quantum dots. Applied Physics Letters, 2010, 96, .	3.3	33
29	Dynamic process of anti-Stokes photoluminescence at a long-range-orderedGa0.5In0.5P/GaAsheterointerface. Physical Review B, 1999, 59, 15358-15362.	3.2	31
30	Impurity doping in self-assembled InAs/GaAs quantum dots by selection of growth steps. Journal of Applied Physics, 2010, 108, .	2.5	31
31	Effect of internal electric field on InAs/GaAs quantum dot solar cells. Journal of Applied Physics, 2014, 115, 083510.	2.5	31
32	Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure. Journal of Applied Physics, 2014, 116, .	2.5	31
33	Carrier dynamics of the intermediate state in InAs/GaAs quantum dots coupled in a photonic cavity under two-photon excitation. Physical Review B, 2012, 86, .	3.2	30
34	Photoreflectance study on residual strain in heteroepitaxial gallium arsenide on silicon. Physical Review B, 1990, 41, 2936-2943.	3.2	29
35	Optical reflectance study of the wetting layers in (In, Ga)As self-assembled quantum dot growth on GaAs(001). Physical Review B, 2002, 66, .	3.2	27
36	Suppression of nonradiative recombination process in directly Si-doped InAs/GaAs quantum dots. Journal of Applied Physics, 2011, 110, 103511.	2.5	25

#	Article	IF	CITATIONS
37	Intraband carrier dynamics in InAs/GaAs quantum dots stimulated by bound-to-continuum excitation. Journal of Applied Physics, 2013, 113, .	2.5	25
38	Broadband control of emission wavelength of InAs/GaAs quantum dots by GaAs capping temperature. Journal of Applied Physics, 2015, 118, .	2.5	24
39	Effect of spacer layer thickness on multi-stacked InGaAs quantum dots grown on GaAs (311)B substrate for application to intermediate band solar cells. Journal of Applied Physics, 2012, 111, 074305.	2.5	23
40	Saturable Two-Step Photocurrent Generation in Intermediate-Band Solar Cells Including InAs Quantum Dots Embedded in Al _{0.3} Ga _{0.7} /GaAs Quantum Wells. IEEE Journal of Photovoltaics, 2016, 6, 465-472.	2.5	23
41	Deepâ€level characterization ofnâ€ŧype GaAs by photoreflectance spectroscopy. Journal of Applied Physics, 1991, 69, 3691-3695.	2.5	22
42	Temperature-dependent carrier tunneling for self-assembled InAs/GaAs quantum dots with a GaAsN quantum well injector. Applied Physics Letters, 2010, 96, 151104.	3.3	22
43	Study on spin-splitting phenomena in the band structure of GdN. Applied Physics Letters, 2012, 100, .	3.3	22
44	A New Method of Photothermal Displacement Measurement by Laser Interferometric Probe -Its Mechanism and Applications to Evaluation of Lattice Damage in Semiconductors. Japanese Journal of Applied Physics, 1992, 31, 3575-3583.	1.5	21
45	The optical processes in AlInP/GaInP/AlInP quantum wells. Journal of Applied Physics, 1996, 80, 4592-4598.	2.5	21
46	High-Brightness Electron Emission from Flexible Carbon Nanotube/Elastomer Nanocomposite Sheets. Japanese Journal of Applied Physics, 2006, 45, L1186-L1189.	1.5	21
47	Preparation of composition-controlled silicon oxynitride films by sputtering; deposition mechanism, and optical and surface properties. Applied Physics A: Solids and Surfaces, 1989, 49, 305-311.	1.4	20
48	Direct optical transitions in indirect-gap (Al0.5Ga0.5)0.51In0.49P by atomic ordering. Physical Review B, 1996, 53, 15713-15718.	3.2	20
49	Photoluminescence from metastable states in long-range ordered (Al0.5Ga0.5)0.51In0.49P. Physical Review B, 1997, 55, 4411-4416.	3.2	20
50	Real time analysis of self-assembled InAs/GaAs quantum dot growth by probing reflection high-energy electron diffraction chevron image. Journal of Applied Physics, 2008, 104, 074305.	2.5	20
51	Fine structure splitting of isoelectronic bound excitons in nitrogen-doped GaAs. Physical Review B, 2008, 77, .	3.2	20
52	Observation of phase shifts in a vertical cavity quantum dot switch. Applied Physics Letters, 2011, 98, 231101.	3.3	20
53	Nanosecond-scale hot-carrier cooling dynamics in one-dimensional quantum dot superlattices. Physical Review B, 2016, 93, .	3.2	19
54	Infrared photodetector sensitized by InAs quantum dots embedded near an Al0.3Ga0.7As/GaAs heterointerface. Scientific Reports, 2020, 10, 11628.	3.3	19

#	Article	IF	CITATIONS
55	Carbon Nanotube/Aluminum Composites As a Novel Field Electron Emitter. Japanese Journal of Applied Physics, 2006, 45, L650-L653.	1.5	18
56	Long-wavelength emission from nitridized InAs quantum dots. Applied Physics Letters, 2003, 83, 4152-4153.	3.3	17
57	Anisotropic magneto-optical effects in one-dimensional diluted magnetic semiconductors. Physical Review B, 2006, 74, .	3.2	17
58	Hot-carrier solar cells using low-dimensional quantum structures. Applied Physics Letters, 2014, 105, 171904.	3.3	17
59	Efficient two-step photocarrier generation in bias-controlled InAs/GaAs quantum dot superlattice intermediate-band solar cells. Scientific Reports, 2017, 7, 5865.	3.3	17
60	Photocurrent polarization in longâ€range ordered Ga0.5In0.5P. Applied Physics Letters, 1995, 66, 1794-1796.	3.3	16
61	Extended wavelength emission to 1.3μm in nitrided InAsâ^•GaAs self-assembled quantum dots. Journal of Applied Physics, 2005, 97, 024306.	2.5	15
62	Side electron emission device using carbon nanofiber/elastomer composite sheet. Applied Physics Letters, 2008, 92, .	3.3	15
63	Narrow-band deep-ultraviolet light emitting device using Al1â^'xGdxN. Applied Physics Letters, 2008, 93, .	3.3	15
64	Analysis of thermoreflectance signals and characterization of thermal conductivity of metal thin films. Review of Scientific Instruments, 2009, 80, 124901.	1.3	15
65	Polarization-insensitive optical gain characteristics of highly stacked InAs/GaAs quantum dots. Journal of Applied Physics, 2014, 115, .	2.5	15
66	Epitaxial two-dimensional nitrogen atomic sheet in GaAs. Applied Physics Letters, 2014, 104, .	3.3	15
67	Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface. Scientific Reports, 2018, 8, 872.	3.3	15
68	Detailed Design and Characterization of All-Optical Switches Based on InAs/GaAs Quantum Dots in a Vertical Cavity. IEEE Journal of Quantum Electronics, 2010, 46, 1582-1589.	1.9	14
69	Broadband light sources using InAs quantum dots with InGaAs strain-reducing layers. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 331-333.	0.8	14
70	Multidirectional observation of an embedded quantum dot. Applied Physics Letters, 2007, 90, 041911.	3.3	13
71	Temperature dependence of photoluminescence characteristics of excitons in stacked quantum dots and quantum dot chains. Journal of Applied Physics, 2010, 107, 073506.	2.5	13
72	Carrier Time-of-Flight Measurement Using a Probe Structure for Direct Evaluation of Carrier Transport in Multiple Quantum Well Solar Cells. IEEE Journal of Photovoltaics, 2014, 4, 1518-1525.	2.5	13

#	Article	IF	CITATIONS
73	Microscopic observation of carrier-transport dynamics in quantum-structure solar cells using a time-of-flight technique. Applied Physics Letters, 2015, 107, .	3.3	13
74	Hot-carrier generation and extraction in InAs/GaAs quantum dot superlattice solar cells. Semiconductor Science and Technology, 2019, 34, 094003.	2.0	13
75	Carrier localization effects in energy up conversion at ordered (Al0.5Ga0.5)0.5In0.5P/GaAs heterointerface. Journal of Applied Physics, 1998, 84, 359-363.	2.5	12
76	Dual chopped photoreflectance spectroscopy for nondestructive characterization of semiconductors and semiconductor nanostructures. Review of Scientific Instruments, 2008, 79, 046110.	1.3	12
77	Intermediate band photovoltaics based on interband–intraband transitions using In _{0.53} Ga _{0.47} As/InP superlattice. Progress in Photovoltaics: Research and Applications, 2013, 21, 472-480.	8.1	12
78	Observation of quantum beat oscillations and ultrafast relaxation of excitons confined in GaAs thin films by controlling probe laser pulses. Journal of Applied Physics, 2012, 111, 023505.	2.5	12
79	Thermal annealing effects on ultra-violet luminescence properties of Gd doped AlN. Journal of Applied Physics, 2015, 117, 163105.	2.5	12
80	Comparison of Electron and Hole Mobilities in Multiple-Quantum-Well Solar Cells Using a Time-of-Flight Technique. IEEE Journal of Photovoltaics, 2015, 5, 1613-1620.	2.5	12
81	Adiabatic two-step photoexcitation effects in intermediate-band solar cells with quantum dot-in-well structure. Scientific Reports, 2019, 9, 7859.	3.3	12
82	Anisotropic magneto-optical effects in(CdTe)0.5(Cd0.75Mn0.25Te)0.5tilted superlattices. Physical Review B, 2004, 69, .	3.2	11
83	Optical Polarization Properties of InAs/GaAs Quantum Dot Semiconductor Optical Amplifier. Japanese Journal of Applied Physics, 2005, 44, 2528-2530.	1.5	11
84	Ferromagnetic properties of GdN thin films studied by temperature dependent circular polarized spectroscopy. Applied Physics Letters, 2012, 101, 072403.	3.3	11
85	Graphoepitaxial growth of ZnS on a textured natural crystalline surface relief foreign substrate. Journal of Applied Physics, 1988, 64, 3492-3496.	2.5	10
86	Bright electron emission from Si-doped AlN thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2007, 4, 2490-2493.	0.8	10
87	Narrowband ultraviolet field-emission device using Gd-doped AlN. IOP Conference Series: Materials Science and Engineering, 2009, 1, 012001.	0.6	10
88	Extremely uniform bound exciton states in nitrogen δ-doped GaAs studied by photoluminescence spectroscopy in external magnetic fields. Journal of Applied Physics, 2011, 110, 083522.	2.5	10
89	Energy Conversion Efficiency of Solar Cells. Green Energy and Technology, 2019, , .	0.6	10
90	Analysis of lattice defects induced by ion implantation with photoâ€acoustic displacement measurements. Journal of Applied Physics, 1994, 76, 5681-5689.	2.5	9

#	Article	IF	CITATIONS
91	Polarization controlled edge emission from columnar InAs/GaAs self-assembled quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2003, 0, 1137-1140.	0.8	9
92	Tuning optical and ferromagnetic properties of thin GdN films by nitrogen-vacancy centers. European Physical Journal B, 2013, 86, 1.	1.5	9
93	Giant optical splitting in the spin-states assisting a sharp magnetic switching in GdN thin films. Applied Physics Letters, 2013, 102, .	3.3	9
94	Electronic transitions in GdN band structure. Journal of Applied Physics, 2014, 115, .	2.5	9
95	Optical properties of tilted II-VI superlattices grown on vicinal surfaces. Physical Review B, 2001, 63, .	3.2	8
96	Multi-stacked InAs/GaNAs quantum dots with direct Si doping for use in intermediate band solar cell. , 2010, , .		8
97	Effect of exciton oscillator strength on upconversion photoluminescence in GaAs/AlAs multiple quantum wells. Applied Physics Letters, 2014, 105, .	3.3	8
98	Two-step photocurrent generation enhanced by miniband formation in InAs/GaAs quantum dot superlattice intermediate-band solar cells. Applied Physics Letters, 2017, 110, .	3.3	8
99	Spatially resolved electronic structure of an isovalent nitrogen center in GaAs. Physical Review B, 2017, 96, .	3.2	8
100	Reply to: "Thermal artefacts in two-photon solar cell experiments― Nature Communications, 2019, 10, 956.	12.8	8
101	Resonant exciton excitation photoluminescence and dynamics in a GaAs/AlAs multiple quantum well with internal electric field. AlP Advances, 2020, 10, .	1.3	8
102	Graphoepitaxial growth of germanium by laser recrystallization. Journal of Applied Physics, 1989, 66, 4770-4774.	2.5	7
103	Self-assembled growth of InAs-quantum dots and postgrowth behavior studied by reflectance-difference spectroscopy. Applied Surface Science, 2000, 159-160, 503-507.	6.1	7
104	Atomically controlled doping of nitrogen on GaAs(001) surfaces. Journal of Crystal Growth, 2007, 301-302, 34-37.	1.5	7
105	Photoluminescence dynamics of coupled quantum dots. Journal of Luminescence, 2008, 128, 975-977.	3.1	7
106	Flexible Field Emission Device Using Carbon Nanofiber Nanocomposite Sheet. Applied Physics Express, 0, 1, 074004.	2.4	7
107	Thermal Conductivity Measurement Technique for Cu-Pt Alloy Thin Films by a Modulated Thermoreflectance Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2009, 73, 434-438.	0.4	7
108	Bound biexciton luminescence in nitrogen <i>Î′</i> â€doped GaAs. Physica Status Solidi (B): Basic Research, 2011, 248, 464-467.	1.5	7

#	Article	IF	CITATIONS
109	Optical and ferromagnetic properties of GdN thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 488-490.	0.8	7
110	Influence of local atomic configuration in AlGdN phosphor thin films on deep ultra-violet luminescence intensity. Journal of Applied Physics, 2011, 110, 093108.	2.5	7
111	Photocarrier transport dynamics in InAs/GaAs quantum dot superlattice solar cells using time-of-flight spectroscopy. Physical Review B, 2016, 94, .	3.2	7
112	Improving laser cooling efficiencies of Yb-doped yttrium aluminum garnet by utilizing non-resonant anti-Stokes emission at high temperatures. Optics Express, 2019, 27, 34961.	3.4	7
113	Solid phase recrystallization in molecular beam deposited gallium arsenide. Applied Physics Letters, 1989, 54, 706-708.	3.3	6
114	Graphoepitaxial growth of germanium on the textured natural crystalline surface relief duplicated on a foreign substrate. Journal of Applied Physics, 1989, 65, 4730-4734.	2.5	6
115	Resonant coupling between confined and unconfined states in a finite-periodIn0.24Ga0.76As/GaAs strained-layer superlattice. Physical Review B, 1994, 50, 2420-2424.	3.2	6
116	Photocurrent anisotropy in compositional modulated superlattice of long-range ordered Ga0.5In0.5P. Journal of Electronic Materials, 1996, 25, 661-665.	2.2	6
117	Spin polarization of exciton luminescence from orderedGa0.5In0.5P. Physical Review B, 1998, 57, R15044-R15047.	3.2	6
118	Dynamic process of two-dimensional InAs growth in Stranski–Krastanov mode. Physica E: Low-Dimensional Systems and Nanostructures, 2000, 7, 891-895.	2.7	6
119	Ultrafast All-Optical Control of Excitons Confined in GaAs Thin Films. Applied Physics Express, 0, 1, 112401.	2.4	6
120	Vertically stacked InAs quantum dots for polarization-independent semiconductor optical amplifiers. Proceedings of SPIE, 2010, , .	0.8	6
121	Control of stacking direction and optical anisotropy in InAs/GaAs quantum dots by In flux. Journal of Applied Physics, 2013, 114, .	2.5	6
122	Control of optical properties in cyanine dye thin film fabricated by a layer-by-layer method. Journal of Applied Physics, 2014, 115, 083503.	2.5	6
123	Emission-wavelength tuning of InAs quantum dots grown on nitrogen-δ-doped GaAs(001). Journal of Applied Physics 2016, 119, 194306 Wide Frequency Tuning of Continuous Terahertz Wave Generated by Difference Frequency Mixing	2.5	6
124	under Exciton-Excitation Conditions in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" overflow="scroll"><mml:mi>Ca</mml:mi><mml:mi>As</mml:mi> / <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"</mml:math </mml:math 	3.8	6
125	overflow="scroll"> <mml:mi>Al</mml:mi> <mml:mi>As</mml:mi> Multiple Quantum Well. Polarization-insensitive fiber-to-fiber gain of semiconductor optical amplifier using closely stacked InAs/GaAs quantum dots. Japanese Journal of Applied Physics, 2020, 59, 032002.	1.5	6
126	Anomaly of dielectric properties in tensâ€nanometerâ€thick lead lanthanum zirconate titanate films on a platinum substrate. Journal of Applied Physics, 1989, 66, 3924-3926.	2.5	5

#	Article	IF	CITATIONS
127	Electron-Beam Electroreflectance Spectroscopy of Semiconductors. Japanese Journal of Applied Physics, 1996, 35, 5367-5373.	1.5	5
128	Magnetophotoluminescence study of theGa0.5In0.5P/GaAsheterointerface with a ordering-induced two-dimensional electron gas. Physical Review B, 2002, 66, .	3.2	5
129	Fourier transformed photoreflectance characterization of interface electric fields in GaAs/GaInP heterojunction bipolar transistor wafers. Journal of Applied Physics, 2003, 94, 6487-6490.	2.5	5
130	Transition with a hysteresis cycle in surface reconstruction on GaAs(001) observed by optical reflectance spectroscopy. Physical Review B, 2003, 67, .	3.2	5
131	Vertical stacking of InAs quantum dots for polarization-insensitive semiconductor optical amplifiers. Journal of Physics: Conference Series, 2010, 245, 012076.	0.4	5
132	Spatially Resolved Thermal Conductivity of Intermetallic Compounds Measured by Micro-Thermoreflectance Method. Nippon Kinzoku Gakkaishi/Journal of the Japan Institute of Metals, 2010, 74, 740-745.	0.4	5
133	Saturation of Förster resonance energy transfer between two optically nonlinear cyanine dyes of small Stokes shift energies in polymer thin films. Journal of Applied Physics, 2011, 110, 083521.	2.5	5
134	Energy band structure and the halfâ€filling of the intermediate band in the quantumâ€dot solar cell. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 622-624.	0.8	5
135	Field-emission properties of carbon nanotube composite in side-electron emission configuration. Journal of Applied Physics, 2011, 109, 074307.	2.5	5
136	Pulse modulation towards low-power operation based on the quantum beat of excitons in a GaAs/AlAs multiple quantum well. Journal Physics D: Applied Physics, 2014, 47, 105101.	2.8	5
137	Effects of non-exciton components excited by broadband pulses on quantum beats in a GaAs/AlAs multiple quantum well. Scientific Reports, 2017, 7, 41496.	3.3	5
138	Hot-carrier generation in a solar cell containing InAs/GaAs quantum-dot superlattices as a light absorber. Applied Physics Express, 2018, 11, 082303.	2.4	5
139	Wide-wavelength-range control of photoluminescence polarization in closely stacked InAs/GaAs quantum dots. Journal of Applied Physics, 2019, 125, .	2.5	5
140	Two-step excitation induced photovoltaic properties in an InAs quantum dot-in-well intermediate-band solar cell. Journal of Applied Physics, 2021, 129, .	2.5	5
141	Higher-interband electroreflectance of long-range orderedGa0.5In0.5P. Physical Review B, 1996, 54, 16714-16718.	3.2	4
142	Time-resolved observation of anti-Stokes photoluminescence at ordered Ga0.5In0.5P and GaAs interfaces. Journal of Luminescence, 2000, 87-89, 269-271.	3.1	4
143	Strain effects on photoluminescence polarization of InAs/GaAs self-assembled quantum dots. Physica Status Solidi (B): Basic Research, 2003, 238, 229-232.	1.5	4
144	Effects of indium segregation on optical properties of nitrogen-doped InAs/GaAs quantum dots. Journal of Applied Physics, 2008, 104, 103532.	2.5	4

#	Article	IF	CITATIONS
145	Side electron emission device using a composite of carbon nanofibers and aluminum. Thin Solid Films, 2009, 518, 530-533.	1.8	4
146	Intraband relaxation process in highly stacked quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 46-49.	0.8	4
147	Dynamics of above-barrier state excitons in multi-stacked quantum dots. Journal of Applied Physics, 2011, 110, 093515.	2.5	4
148	Multiple excitation process in deep-ultraviolet emission from AlGdN thin films pumped by an electron beam. Journal of Applied Physics, 2012, 111, 083526.	2.5	4
149	Rapid dephasing related to intersubband transitions induced by exciton quantum beats observed by a pump-probe technique in a GaAs/AlAs multiple quantum well. Physical Review B, 2015, 91, .	3.2	4
150	Fabrication of cyanine dye thin films grown by a layer-by-layer method. Materials Research Express, 2015, 2, 076402.	1.6	4
151	Microscopic properties of degradation-free capped GdN thin films studied by electron spin resonance. Journal of Applied Physics, 2015, 117, 043909.	2.5	4
152	Effects of rapid thermal annealing on two-dimensional delocalized electronic states of the epitaxial N δ-doped layer in GaAs. Applied Physics Letters, 2016, 108, 111905.	3.3	4
153	Effective drift mobility approximation in multiple quantum-well solar cell. , 2016, , .		4
154	Two-step photocurrent generation enhanced by the fundamental-state miniband formation in intermediate-band solar cells using a highly homogeneous InAs/GaAs quantum-dot superlattice. Applied Physics Express, 2018, 11, 012301.	2.4	4
155	Reciprocal Relation Between Intraband Carrier Generation and Interband Recombination at the Heterointerface of Two-Step Photon Up-Conversion Solar Cells. Physical Review Applied, 2020, 14, .	3.8	4
156	Increase in terahertz-wave generation by difference frequency mixing by the overlap of exciton states in different GaAs/AlAs quantum wells and spectroscopic measurements. Optics Express, 2021, 29, 24387.	3.4	4
157	Photoluminescence and Photoreflectance Study of Electronic Structure in Pseudomorphic n-AlGaAs/InGaAs/GaAs. Japanese Journal of Applied Physics, 1992, 31, L756-L758.	1.5	3
158	Excitonic states inCdTe/Cd0.74Mg0.26Tequantum wires grown on vicinal substrates. Physical Review B, 2003, 67, .	3.2	3
159	Anisotropic exchange interaction caused by hole-spin reorientation in (CdTe)0.5(Cd0.75Mn0.25Te)0.5 tilted superlattices grown on Cd0.74Mg0.26Te(001) vicinal surface. Journal of Crystal Growth, 2005, 275, e2221-e2224.	1.5	3
160	Emission-wavelength extension of nitrided InAs/GaAs quantum dots with different sizes. Journal of Crystal Growth, 2007, 301-302, 709-712.	1.5	3
161	Anisotropic magneto-optical effects inCdTe/Cd0.75Mn0.25Tequantum wire structures. Physical Review B, 2008, 78, .	3.2	3
162	Transient reflectivity response with negative time delay caused by femtosecond pulse propagation in GaAs thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S139-S142.	0.8	3

#	Article	IF	CITATIONS
163	Propagation velocity of excitonic polaritons confined in GaAs thin films. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 378-380.	0.8	3
164	Depolarization effect on optical control of exciton states confined in GaAs thin films. Journal of Applied Physics, 2011, 110, 043514.	2.5	3
165	Dephasing of Excitonic Polaritons Confined in GaAs Thin Films. Journal of the Physical Society of Japan, 2011, 80, 034704.	1.6	3
166	Magneto-optical effect in GdN epitaxial thin film. Journal of Physics: Conference Series, 2013, 417, 012053.	0.4	3
167	Effects of exciton line widths on the amplitude of quantum beat oscillations. Applied Physics Express, 2016, 9, 062801.	2.4	3
168	Increase in exciton decay rate due to plane-to-plane interaction between cyanine thin films. AIP Advances, 2016, 6, 075209.	1.3	3
169	Polarization characteristics of electroluminescence and net modal gain in highly stacked InAs/GaAs quantum-dot laser devices. Journal of Applied Physics, 2016, 120, .	2.5	3
170	Effect of lattice-mismatch strain on electron dynamics in InAs/GaAs quantum dots as seen by time-domain terahertz spectroscopy. Journal Physics D: Applied Physics, 2018, 51, 305102.	2.8	3
171	Determination of silicon wafer site flatness using dual heterodyne interferometers with sub-nanometer precision. Review of Scientific Instruments, 2020, 91, 065114.	1.3	3
172	An energy transfer accompanied by phonon absorption in ytterbium-doped yttrium aluminum perovskite for optical refrigeration. Applied Physics Letters, 2020, 117, .	3.3	3
173	Theoretical Analysis of Photoacoustic Displacement for Inhomogeneous Materials. Japanese Journal of Applied Physics, 1994, 33, 6032-6038.	1.5	2
174	Carrier-Relaxation Process in Time-Resolved Up-Converted Photoluminescence at Ordered (Al0.5Ga0.5)0.5In0.5P and GaAs Heterointerface. Japanese Journal of Applied Physics, 1999, 38, 1001-1003.	1.5	2
175	Two-dimensional electron gas at Ga0.5In0.5P/GaAs heterointerface spontaneously induced by atomic ordering. Physica E: Low-Dimensional Systems and Nanostructures, 2002, 13, 329-332.	2.7	2
176	Control of InxGa1-xAs Capping Layer Induced Optical Polarization in Edge-Emitting Photoluminescence of InAs Quantum Dots. Japanese Journal of Applied Physics, 2004, 43, 1978-1980.	1.5	2
177	Anisotropic exchange interaction in CdTe/Cd0.75Mn0.25Te quantum wires. Physica E: Low-Dimensional Systems and Nanostructures, 2004, 21, 345-348.	2.7	2
178	Excitation power dependence of nonlinear optical response of excitons in GaAs/AlAs superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 50-53.	0.8	2
179	Polarization controlled emisson from closely stacked InAs/GaAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2013, 10, 1492-1495.	0.8	2
180	Correlation between local atomic structure and ultraviolet luminescence of AlGdN thin films. Journal of Physics: Conference Series, 2013, 417, 012049.	0.4	2

#	Article	lF	CITATIONS
181	Resonant indirect excitation of Gd3+ in AlN thin films. Journal of Applied Physics, 2014, 115, 173508.	2.5	2
182	Ferromagnetic resonance features of degenerate GdN semiconductor. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1905-1909.	2.1	2
183	Bound-to-continuum intraband transition properties in InAs/GaAs quantum dot superlattice solar cells. Applied Physics Express, 2019, 12, 125008.	2.4	2
184	Voltage boost effects in two-step photon upconversion solar cells with a modulation-doped structure. Journal of Applied Physics, 2021, 130, 085701.	2.5	2
185	Two-photon photocurrent spectra of InAs quantum dot-in-well intermediated-band solar cells at room temperature. Journal of Applied Physics, 2021, 130, .	2.5	2
186	Radiative Lifetimes of Excitons in CdMgTe/CdTe Tilted Superlattices Grown on Vicinal Surfaces. Physica Status Solidi A, 2002, 190, 699-702.	1.7	1
187	Electronic Structure of Ordered Ga0.5In0.5P/GaAs Heterointerface Studied by Raman-Scattering and Photoluminescence-Excitation Measurements. Japanese Journal of Applied Physics, 2005, 44, 7390-7394.	1.5	1
188	Valence-band mixing induced bysp-d exchange interaction in CdMnTe quantum wires. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 667-670.	0.8	1
189	Exciton response controlled by introducing a spacer layer in nitrided InAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, S146.	0.8	1
190	Statistical fluctuation of magnetization in Mn-composition modulated Cd1â^'xMnxTe quantum wires. Journal of Applied Physics, 2010, 107, 043521.	2.5	1
191	All-optical switch using InAs quantum dots in a vertical cavity. , 2010, , .		1
192	Energy band structure and absorption coefficients in the quantum-dot intermediate band solar cells. , 2010, , .		1
193	Ferromagnetic State of GdN Thin Film Studied by Ferromagnetic Resonance. AIP Conference Proceedings, 2011, , .	0.4	1
194	Interaction between conductionâ€band edge and nitrogenâ€related localized levels in nitrogen <i>δ</i> â€doped GaAs. Physica Status Solidi C: Current Topics in Solid State Physics, 2011, 8, 365-367.	0.8	1
195	High-resolution optical coherence tomography using broadband light source with strain-controlled InAs/GaAs quantum dots. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 2473-2476.	0.8	1
196	Evaluation of minority and majority spin band energies of ferromagnetic GdN thin film using optical absorption spectroscopy. , 2013, , .		1
197	Effects of pumping on propagation velocities of confined exciton polaritons in GaAs/AlxGa1â^'xAs double heterostructure thin films under resonant and non-resonant probe conditions. Journal of Applied Physics, 2013, 113, 013514.	2.5	1
198	Excitation of Thin Cyanine Films via Energy Transfer from Si Substrate. Journal of the Physical Society of Japan, 2017, 86, 094710.	1.6	1

#	Article	lF	CITATIONS
199	Exciton dynamics as a function of excitation intensity and double-pulse excitation in cyanine molecule thin films: Toward low-power optical switches. Journal of Applied Physics, 2019, 126, 033103.	2.5	1
200	Hot-Carrier Extraction in InAs/GaAs Quantum Dot Superlattice Solar Cells. , 2019, , .		1
201	Electron transport in a silicon crystal observed by energy transfer luminescence. Japanese Journal of Applied Physics, 2020, 59, 082005.	1.5	1
202	Modulation of exciton states through resonant excitation by continuous wave lasers in a GaAs/AlAs multiple quantum well. Journal Physics D: Applied Physics, 2021, 54, 335106.	2.8	1
203	Atomic ordering in epitaxial alloy semiconductors: from the discoveries to the physical understanding. , 1999, , 163-183.		1
204	Plasmon-phonon coupling at Ga0.5In0.5P/GaAs heterointerfaces induced by CuPt-type ordering. Springer Proceedings in Physics, 2001, , 453-454.	0.2	1
205	Quantum Dot Switches: Towards Nanoscale Power-Efficient All-Optical Signal Processing. , 2012, , 197-221.		1
206	Two-step photon up-conversion solar cell: propose and demonstration. , 2018, , .		1
207	Properties of Anti-Stokes Photoluminescence and Ideal Laser Cooling Performance in Yb-Doped Yttrium Aluminum Garnet Thin Film. Zairyo/Journal of the Society of Materials Science, Japan, 2020, 69, 727-732.	0.2	1
208	Yb-doped Y–Al–O thin films with a self-organized columnar structure and their anti-Stokes photoluminescence properties. AlP Advances, 2022, 12, .	1.3	1
209	Anisotropic photocurrent in long-range ordered Ga/sub 0.5/In/sub 0.5/P. , 0, , .		0
210	Hydrogenated Amorphous Silicon/Crystalline Silicon Double Heterojunction X-Ray Sensor. Japanese Journal of Applied Physics, 1996, 35, 5342-5345.	1.5	0
211	Efficiency of photoluminescence up-conversion at (Al/sub 0.5/Ga/sub 0.5/)/sub 0.5/In/sub 0.5/P and GaAs heterointerface. , 0, , .		0
212	Linear electrooptic effect in ordered (Al0.5Ga0.5)0.5In0.5P. Journal of Applied Physics, 1999, 86, 3140-3143.	2.5	0
213	Energy relaxation by multiphonon processes in partially ordered (Al/sub 0.5/Ga/sub 0.5/)/sub 0.5/In/sub 0.5/P. , 0, , .		0
214	<title>Diffraction property of ultrashort laser pulses in photorefractive multiple quantum
wells</title> . , 2000, 4110, 9.		0
215	Interdiffusion effects at long-range ordered Ga/sub 0.5/In/sub 0.5/P and GaAs heterointerfaces. , 0, , .		0
216	Optical transitions in new semiconductor alloy GaAs/sub 1-x/Bi/sub x/ with temperature-insensitive band gap. , 0, , .		0

#	Article	IF	CITATIONS
217	Internal electric field effects at ordered Ga/sub 0.5/In/sub 0.5/P/GaAs heterointerface investigated by photoreflectance spectroscopy. , 0, , .		0
218	Inelastic phonon scattering in long-range-ordered(Al0.5Ga0.5)0.5In0.5P. Physical Review B, 2001, 63, .	3.2	0
219	High-density electron gas induced by atomic ordering in undoped Ga/sub 0.5/In/sub 0.5/P/GaAs heterostructure. , 0, , .		0
220	Novel characterization technique for GaAs/GaInP heterojunction bipolar transistor wafers based on Fourier transformed photoreflectance enabling selective determination of interface electric fields. , 0, , .		0
221	Femtosecond Response of Diffraction Efficiency of GaAs/AlGaAs Photorefractive Multiple Quantum Well. Japanese Journal of Applied Physics, 2003, 42, 2329-2331.	1.5	0
222	Nitridized InAs/GaAs self-assembled quantum dots for optical communication wavelength. , 0, , .		0
223	Hole-spin reorientation in (CdTe)0.5(Cd0.75Mn0.25Te)0.5 tilted superlattices grown on Cd0.74Mg0.26Te(001) vicinal surface. AIP Conference Proceedings, 2005, , .	0.4	0
224	Order-Parameter Dependence of Spontaneous Electron Accumulation at Ga0.5In0.5P/GaAs Studied by Raman-Scattering and Photoluminescence Measurements. AIP Conference Proceedings, 2005, , .	0.4	0
225	Mechanism of emission-wavelength extension in nitrided InAs/GaAs quantum dots. , 0, , .		0
226	Wavelength control of nitrided InAs/GaAs quantum dots in fiber-optic communication region. , 0, , .		0
227	Bound-exciton luminescence from nitrogen doped GaAs grown by site-controlled doping technique. , 2005, , .		0
228	Valence-band mixing in CdTe/CdMnTe nano-wire structures in magnetic field. , 2005, , .		0
229	Emission-Wavelength Extension of InAs/GaAs Quantum Dots by Controlling Lattice-Mismatch Strain. , 0, , .		0
230	Multidirectional Transmission Electron Microscope Observation of a Single InAs/GaAs Self-Assembled Quantum Dot. Indium Phosphide and Related Materials Conference (IPRM), IEEE International Conference on, 2007, , .	0.0	0
231	Control of Optical Emission from Coupled Excitonic States in Quantum Dot Superlattice Structures. Indium Phosphide and Related Materials Conference (IPRM), IEEE International Conference on, 2007, , .	0.0	0
232	Real Time Probing of Self-Assembling Process Steps in InAs/GaAs Quantum Dot Growth. Indium Phosphide and Related Materials Conference (IPRM), IEEE International Conference on, 2007, , .	0.0	0
233	Anisotropic Magnetic-Field Evolution of Valence-Band States in One-Dimensional Diluted Magnetic Semiconductors. AIP Conference Proceedings, 2007, , .	0.4	0

234 Exciton fine structure of nitrogen isoelectronic centers in GaAs. , 2008, , .

0

#	Article	lF	CITATIONS
235	Anisotropic linear-polarization luminescence in CdTe/CdMnTe quantum wires. Journal of Luminescence, 2009, 129, 1448-1453.	3.1	0
236	Quantum dots in a vertical cavity for all-optical switching devices. , 2009, , .		0
237	Highly Efficient Ultra-Violet Luminescence from Low-Temperature Grown AlGdN. Zairyo/Journal of the Society of Materials Science, Japan, 2010, 59, 666-670.	0.2	Ο
238	Intraband relaxation of photoexcited carriers in multiple stacked quantum dots and quantum dot chains. , 2010, , .		0
239	Magneto-Photoluminescence Spectroscopy of Exciton Fine Structure in Nitrogen δ-Doped GaAs. AlP Conference Proceedings, 2011, , .	0.4	Ο
240	Ultraviolet Light Emitting Devices Using AlGdN. Materials Research Society Symposia Proceedings, 2011, 1342, 55.	0.1	0
241	Two-photons transition in intermediate band solar cells. , 2011, , .		Ο
242	Carrier dynamics in intermediate states of InAs/GaAs quantum dots embedded in photonic cavity structure. , 2012, , .		0
243	Nearâ€field photoluminescence spectroscopy of CdTe/Cd _{0.75} Mn _{0.25} Te tilted superlattices. Physica Status Solidi C: Current Topics in Solid State Physics, 2012, 9, 262-265.	0.8	Ο
244	Carrier dynamics in intermediate states of InAs/GaAs quantum dots embedded in photonic cavity structure. , 2013, , .		0
245	Carrier dynamics in intermediate states of InAs/GaAs quantum dots embedded in photonic cavity structure. , 2013, , .		О
246	Enhancement of Optical Anisotropy by Interconnection Effect along Growth Direction in Multistacked Quantum Dots. Japanese Journal of Applied Physics, 2013, 52, 012001.	1.5	0
247	Two-step photocarrier generation in InAs/GaAs quantum dot superlattice intermediate band solar cell. , 2015, , .		Ο
248	Saturable two-step photocurrent generation in intermediate-band solar cells including InAs quantum dots embedded in Al0.3Ga0.7As/GaAs quantum wells. , 2015, , .		0
249	Comparison of electron and hole mobilities in multiple quantum well solar cells using a time-of-flight technique. , 2015, , .		Ο
250	Ultrafast photocarrier transport dynamics in InAs/GaAs quantum dot superlattice solar cell. , 2015, , .		0
251	Suppression of thermal carrier escape and enhanced two-step photon absorption in quantum-dot intermediate-band solar cells with a high-potential barrier. , 2015, , .		0
252	Polarization anisotropy of electroluminescence and net-modal gain in highly stacked InAs/GaAs quantum-dot laser devices. , 2016, , .		0

#	Article	IF	CITATIONS
253	Two-dimensional energy dispersion in thermally annealed epitaxial nitrogen atomic sheet in GaAs. , 2016, , .		0
254	Organic-Lead Halide Perovskite Solar Cell with ITO Transparent Electrode Deposited by Sputtering Process. Zairyo/Journal of the Society of Materials Science, Japan, 2016, 65, 642-646.	0.2	0
255	Recent Advancement of Semiconductor Materials and Devices. Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 244-249.	0.2	0
256	Fundamental Device Characteristics of Hot Carrier Solar Cell Using InAs/GaAs Quantum Dot Superlattices Zairyo/Journal of the Society of Materials Science, Japan, 2017, 66, 629-633.	0.2	0
257	Carrier collection efficiency of intraband-excited carriers in two-step photon up-conversion solar cells. , 2018, , .		0
258	Development of mercury-free ultraviolet light emitting devices. , 2018, , .		0
259	Actual Calculation of Solar Cell Efficiencies. Green Energy and Technology, 2019, , 81-137.	0.6	0
260	Ideal Laser Cooling Efficiency Utilizing Anti-Stokes Luminescence in Yb-Doped Yttrium Aluminum Garnet Powder Crystals. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 762-766.	0.2	0
261	Reciprocal relationship between photoluminescence and photocurrent in two-step photon up-conversion solar cell. , 2019, , .		0
262	Collection of Photocarriers Varied by Effective Electron Intraband Excitation in an InAs Quantum Dot-in-Well Intermediate Band Solar Cell. , 2021, , .		0
263	Optical Anisotropy of Stranski-Krastanov Growth Surface of InAs on GaAs (001). Springer Proceedings in Physics, 2001, , 365-366.	0.2	0
264	Energy relaxation by phonon scattering in long-range ordered (Al0.5Ga0.5)0.5In0.5P. Springer Proceedings in Physics, 2001, , 218-219.	0.2	0
265	Confined Electronic Structures of Nitrogen Isoelectronic Centers in GaAs Grown by Atomically Controlled Doping Technique. AIP Conference Proceedings, 2007, , .	0.4	0
266	Atomically Controlled Growth of Self-Assembled Quantum Dots and Realization of Highly Functional Optical Responses. Journal of Smart Processing, 2013, 2, 206-212.	0.1	0
267	Analysis of Optical Waveguide Mode in Closely-Stacked InAs/GaAs Quantum Dot Semiconductor Optical Amplifiers. Zairyo/Journal of the Society of Materials Science, Japan, 2015, 64, 685-689.	0.2	0
268	Effects of a thin nitrogen-doped layer on terahertz dynamics in GaAs containing InAs quantum dots. OSA Continuum, 2019, 2, 1621.	1.8	0
269	Optical Response of Two-Dimensional Photonic Crystal on Metal. Zairyo/Journal of the Society of Materials Science, Japan, 2019, 68, 757-761.	0.2	0
270	Diffusion photocurrent influenced by intraband excitation in an intermediate band solar cell with type-I band alignment. Japanese Journal of Applied Physics, 0, , .	1.5	0