Haoxiang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6967586/publications.pdf Version: 2024-02-01

Ηλοχιλης Υμ

#	Article	IF	CITATIONS
1	Insight into the electrolyte strategies for aqueous zinc ion batteries. Coordination Chemistry Reviews, 2022, 452, 214297.	18.8	92
2	Interlayer gap widened TiS2 for highly efficient sodium-ion storage. Journal of Materials Science and Technology, 2022, 107, 64-69.	10.7	50
3	Nickel ferrocyanides for aqueous ammonium ion batteries. Inorganic Chemistry Frontiers, 2022, 9, 2001-2010.	6.0	15
4	Synergistic dual conversion reactions assisting Pb-S electrochemistry for energy storage. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118675119.	7.1	28
5	Pre-intercalation chemistry of electrode materials in aqueous energy storage systems. Coordination Chemistry Reviews, 2022, 460, 214477.	18.8	31
6	Ti2Nb10O29@C hollow submicron ribbons for superior lithium storage. Ceramics International, 2022, 48, 23334-23340.	4.8	7
7	Optimizing NH ₄ ⁺ Storage Capability of Nickel Ferrocyanide by Regulating Coordination Anion in Aqueous Electrolytes. ChemElectroChem, 2022, 9, .	3.4	5
8	Copper hexacyanoferrate as ultra-high rate host for aqueous ammonium ion storage. Chemical Engineering Journal, 2021, 421, 127767.	12.7	64
9	Cu ₂ Nb ₃₄ O ₈₇ nanowires as a superior lithium storage host in advanced rechargeable batteries. Inorganic Chemistry Frontiers, 2021, 8, 444-451.	6.0	31
10	Surface chemistry of LiFePO4 cathode material as unraveled by HRTEM and XPS. Ionics, 2021, 27, 31-37.	2.4	9
11	Copper niobate nanowires boosted by a N, S co-doped carbon coating for superior lithium storage. Dalton Transactions, 2021, 50, 11030-11038.	3.3	11
12	Cu3(PO4)2: Novel Anion Convertor for Aqueous Dual-Ion Battery. Nano-Micro Letters, 2021, 13, 41.	27.0	26
13	Thermodynamic analysis and perspective of aqueous metal-sulfur batteries. Materials Today, 2021, 49, 184-200.	14.2	31
14	Insight into the Synergistic Effect of N, S Coâ€Doping for Carbon Coating Layer on Niobium Oxide Anodes with Ultraâ€Long Life. Advanced Functional Materials, 2021, 31, 2100311.	14.9	82
15	Hydrogen Bond-Assisted Ultra-Stable and Fast Aqueous NH4+ Storage. Nano-Micro Letters, 2021, 13, 139.	27.0	77
16	A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€ion Insertion and Excellent Stability. Angewandte Chemie - International Edition, 2021, 60, 18430-18437.	13.8	102
17	Hydrothermal synthesis of β-MnO2 nanorods for highly efficient zinc-ion storage. Ionics, 2021, 27, 3943-3950.	2.4	6
18	A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€ion Insertion and Excellent Stability. Angewandte Chemie, 2021, 133, 18578-18585.	2.0	10

HAOXIANG YU

#	Article	IF	CITATIONS
19	Frontispiece: A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€Ion Insertion and Excellent Stability. Angewandte Chemie - International Edition, 2021, 60, .	13.8	0
20	Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Nano-Micro Letters, 2021, 13, 166.	27.0	73
21	Frontispiz: A TiSe ₂ â€Graphite Dual Ion Battery: Fast Naâ€Ion Insertion and Excellent Stability. Angewandte Chemie, 2021, 133, .	2.0	0
22	The Nature of the Ultrahigh Initial Coulombic Efficiency of Ni ₂ Fe(CN) ₆ in Aqueous Ammonium-Ion Batteries. ACS Applied Energy Materials, 2021, 4, 9594-9599.	5.1	22
23	Lithium storage behaviors of PbNb2O6 in rechargeable batteries. Ceramics International, 2021, 47, 26732-26737.	4.8	2
24	An anode-free aqueous dual-ion battery. Sustainable Energy and Fuels, 2021, 5, 3298-3302.	4.9	9
25	Common ion effect enhanced Prussian blue analogues for aqueous ammonium ion storage. Dalton Transactions, 2021, 50, 6520-6527.	3.3	24
26	The finding of nickel extraction material: How nickel ferrocyanide offer excess capacity. Nano Today, 2021, 41, 101327.	11.9	1
27	The journey of lithium ions in the lattice of PNb ₉ O ₂₅ . Materials Chemistry Frontiers, 2020, 4, 631-637.	5.9	15
28	Functional cation defects engineering in TiS2 for high-stability anode. Nano Energy, 2020, 67, 104295.	16.0	83
29	Heteroatom-doped carbon-based materials for lithium and sodium ion batteries. Energy Storage Materials, 2020, 32, 65-90.	18.0	225
30	Polymorphism-Controlled Electrochemical Energy Storage Performance of LiNbWO ₆ . Chemistry of Materials, 2020, 32, 3376-3384.	6.7	31
31	Electrochemical uptake/release of lithium in GaNb11O29 nanowires as anode material for rechargeable lithium ion battery. Ceramics International, 2020, 46, 20537-20544.	4.8	5
32	BaNb3.6010 nanowires with superior electrochemical performance towards ultrafast and highly stable lithium storage. Energy Storage Materials, 2019, 16, 400-410.	18.0	43
33	Commercially available InSb as a high-performance anode for secondary batteries towards superior lithium storage. Sustainable Energy and Fuels, 2019, 3, 2668-2674.	4.9	13
34	Review on niobium-based chalcogenides for electrochemical energy storage devices: Application and progress. Nano Energy, 2019, 65, 104049.	16.0	46
35	FeNb11O29 nanotubes: Superior electrochemical energy storage performance and operating mechanism. Nano Energy, 2019, 58, 399-409.	16.0	83
36	Observation of ZrNb ₁₄ O ₃₇ Nanowires as a Lithium Container via In Situ and Ex Situ Techniques for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2019, 11, 22429-22438.	8.0	23

HAOXIANG YU

#	Article	IF	CITATIONS
37	Preparation of TiNb6O17 nanospheres as high-performance anode candidates for lithium-ion storage. Chemical Engineering Journal, 2019, 374, 937-946.	12.7	37
38	Lab‣cale In Situ Xâ€Ray Diffraction Technique for Different Battery Systems: Designs, Applications, and Perspectives. Small Methods, 2019, 3, 1900119.	8.6	39
39	Constructing Hollow Nanofibers To Boost Electrochemical Performance: Insight into Kinetics and the Li Storage Mechanism for CrNb ₄₉ O ₁₂₄ . ACS Applied Energy Materials, 2019, 2, 2672-2679.	5.1	12
40	Compositing SrLi2Ti6O14 with chemical deposited silver for enhancing lithium ion storage. Ceramics International, 2019, 45, 6885-6890.	4.8	3
41	H0.92K0.08TiNbO5 Nanowires Enabling High-Performance Lithium-Ion Uptake. ACS Applied Materials & Interfaces, 2019, 11, 9136-9143.	8.0	13
42	Pretreated commercial TiSe2 as an insertion-type potassium container for constructing "Rocking-Chair―type potassium ion batteries. Energy Storage Materials, 2019, 22, 154-159.	18.0	71
43	LiY(MoO4)2 nanotubes: Novel zero-strain anode for electrochemical energy storage. Energy Storage Materials, 2019, 21, 297-307.	18.0	27
44	An overview and future perspectives of aqueous rechargeable polyvalent ion batteries. Energy Storage Materials, 2019, 18, 68-91.	18.0	113
45	K ₂ Nb ₈ O ₂₁ nanotubes with superior electrochemical performance for ultrastable lithium storage. Journal of Materials Chemistry A, 2018, 6, 8620-8632.	10.3	51
46	Sol–Gel Synthesis and in Situ X-ray Diffraction Study of Li ₃ Nd ₃ W ₂ O ₁₂ as a Lithium Container. ACS Applied Materials & Interfaces, 2018, 10, 12716-12721.	8.0	7
47	Deep insights into kinetics and structural evolution of nitrogen-doped carbon coated TiNb24O62 nanowires as high-performance lithium container. Nano Energy, 2018, 54, 227-237.	16.0	96
48	Lithium, sodium and potassium storage behaviors of Pb3Nb4O13 nanowires for rechargeable batteries. Ceramics International, 2018, 44, 17094-17101.	4.8	16
49	Nano-structured GeNb18O47 as novel anode host with superior lithium storage performance. Electrochimica Acta, 2018, 282, 634-641.	5.2	19
50	K6Nb10.8O30 groove nanobelts as high performance lithium-ion battery anode towards long-life energy storage. Nano Energy, 2018, 52, 192-202.	16.0	57
51	Rapid and durable electrochemical storage behavior enabled by V ₄ Nb ₁₈ O ₅₅ beaded nanofibers: a joint theoretical and experimental study. Journal of Materials Chemistry A, 2018, 6, 17389-17400.	10.3	24
52	Electrospun WNb ₁₂ O ₃₃ nanowires: superior lithium storage capability and their working mechanism. Journal of Materials Chemistry A, 2017, 5, 8972-8980.	10.3	74
53	TiNb 2 O 7 hollow nanofiber anode with superior electrochemical performance in rechargeable lithium ion batteries. Nano Energy, 2017, 38, 109-117.	16.0	160
54	Lithiation/Delithiation Behavior of Silver Nitrate as Lithium Storage Material for Lithium Ion Batteries. ACS Sustainable Chemistry and Engineering, 2017, 5, 5686-5693.	6.7	5

HAOXIANG YU

#	Article	IF	CITATIONS
55	Carbon-Enhanced Electrochemical Performance for Spinel Li ₅ Cr ₇ Ti ₆ O ₂₅ as a Lithium Host Material. ACS Sustainable Chemistry and Engineering, 2017, 5, 957-964.	6.7	24
56	High-Rate Long-Life Pored Nanoribbon VNb ₉ O ₂₅ Built by Interconnected Ultrafine Nanoparticles as Anode for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 30608-30616.	8.0	54
57	Effect of Sodium-Site Doping on Enhancing the Lithium Storage Performance of Sodium Lithium Titanate. ACS Applied Materials & Interfaces, 2016, 8, 10302-10314.	8.0	23
58	Advanced BaLi ₂ Ti ₆ O ₁₄ Anode Fabricated via Lithium Site Substitution by Magnesium. ACS Sustainable Chemistry and Engineering, 2016, 4, 4859-4867.	6.7	18