Curt I Civin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6967514/publications.pdf Version: 2024-02-01

CLIDT I CIVIN

#	Article	IF	CITATIONS
1	Comparative efficacy and mechanism of action of cardiac progenitor cells after cardiac injury. IScience, 2022, 25, 104656.	4.1	6
2	Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclax. Blood Advances, 2021, 5, 711-724.	5.2	10
3	Hypoxia-inducible factor 1-alpha enhances the secretome to rejuvenate adult cardiosphere-derived cells. Journal of Thoracic and Cardiovascular Surgery, 2021, , .	0.8	4
4	Deterministic Cell Separation Recovers >2-Fold T Cells, and More NaÃ⁻ve T Cells, for Autologous Cell Therapy As Compared to Centrifugally Prepared Cells. Blood, 2021, 138, 2847-2847.	1.4	1
5	A Novel 2-Carbon-Linked Dimeric Artemisinin With Potent Antileukemic Activity and Favorable Pharmacology. Frontiers in Oncology, 2021, 11, 790037.	2.8	5
6	MicroRNAs as regulators and effectors of hematopoietic transcription factors. Wiley Interdisciplinary Reviews RNA, 2019, 10, e1537.	6.4	30
7	Regulation of cancer stem cell properties by SIX1, a member of the PAX-SIX-EYA-DACH network. Advances in Cancer Research, 2019, 141, 1-42.	5.0	26
8	PAX-SIX-EYA-DACH Network modulates GATA-FOG function in fly hematopoiesis and human erythropoiesis. Development (Cambridge), 2019, 147, .	2.5	5
9	Deterministic Lateral Displacement: The Next-Generation CAR T-Cell Processing?. SLAS Technology, 2018, 23, 338-351.	1.9	19
10	A Fluidic Culture Platform for Spatially Patterned Cell Growth, Differentiation, and Cocultures. Tissue Engineering - Part A, 2018, 24, 1715-1732.	3.1	31
11	STAT5 inhibition induces TRAIL/DR4 dependent apoptosis in peripheral T-cell lymphoma. Oncotarget, 2018, 9, 16792-16806.	1.8	27
12	Stability of patient-specific features of altered DNA replication timing in xenografts of primary human acute lymphoblastic leukemia. Experimental Hematology, 2017, 51, 71-82.e3.	0.4	28
13	Gene expression and mutation-guided synthetic lethality eradicates proliferating and quiescent leukemia cells. Journal of Clinical Investigation, 2017, 127, 2392-2406.	8.2	64
14	Automated leukocyte processing by microfluidic deterministic lateral displacement. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2016, 89, 1073-1083.	1.5	40
15	Inefficient megakaryopoiesis in mouse hematopoietic stem–progenitor cells lacking T-bet. Experimental Hematology, 2016, 44, 194-206.e17.	0.4	1
16	Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted <i>in vivo</i> , and synergized with antileukemic drugs. Oncotarget, 2016, 7, 7268-7279.	1.8	28
17	Uncovering low-dimensional, miR-based signatures of acute myeloid and lymphoblastic leukemias with a machine-learning-driven network approach. Convergent Science Physical Oncology, 2015, 1, 025002.	2.6	10
18	c-MYC Generates Repair Errors via Increased Transcription of Alternative-NHEJ Factors, LIG3 and PARP1, in Tyrosine Kinase–Activated Leukemias. Molecular Cancer Research, 2015, 13, 699-712.	3.4	55

Curt I Civin

#	Article	IF	CITATIONS
19	<i><scp>MIR</scp>144</i> and <i><scp>MIR</scp>451</i> regulate human erythropoiesis via <scp>RAB</scp> 14. British Journal of Haematology, 2015, 168, 583-597.	2.5	53
20	Integrated analysis of CRLF2 signaling in acute lymphoblastic leukemia identifies Polo-like kinase 1 as a potential therapeutic target. Leukemia and Lymphoma, 2015, 56, 1524-1527.	1.3	2
21	RAB14 and RAB5 Gtpases Regulate Human Erythropoiesis, Potentially Via Opposing Roles in Endosomal Recycling. Blood, 2015, 126, 937-937.	1.4	0
22	Correlated miR-mRNA Expression Signatures of Mouse Hematopoietic Stem and Progenitor Cell Subsets Predict "Stemness―and "Myeloid―Interaction Networks. PLoS ONE, 2014, 9, e94852.	2.5	9
23	Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells, Molecules, and Diseases, 2014, 52, 126-133.	1.4	48
24	Regulation of RAB5C Is Important for the Growth Inhibitory Effects of MiR-509 in Human Precursor-B Acute Lymphoblastic Leukemia. PLoS ONE, 2014, 9, e111777.	2.5	26
25	Gene Expression and Mutation Analysis (GEMA) –Guided Precision Medicine Targeting PARP1 to Induce Synthetic Lethality in DNA-PK –Deficient Quiescent and BRCA-Deficient Proliferating Leukemia Stem and Progenitor Cells. Blood, 2014, 124, 480-480.	1.4	0
26	Artemisinin-derived dimer phosphate esters as potent anti-cytomegalovirus (anti-CMV) and anti-cancer agents: A structure–activity study. Bioorganic and Medicinal Chemistry, 2013, 21, 3702-3707.	3.0	33
27	MiR-144 and MiR-451 Regulate Human Erythropoiesis By Targeting RAB14. Blood, 2013, 122, 942-942.	1.4	4
28	Interleukin-6 Reduces Erythroid Development and Mitochondrial Membrane Potential In Human Erythroleukemic Cells. Blood, 2013, 122, 3420-3420.	1.4	0
29	Interleukin-6 Is a Significant Modifier of the Anemia Associated with Aging in Mice Blood, 2012, 120, 2094-2094.	1.4	0
30	FLT3-ITD Knock-in Impairs Hematopoietic Stem Cell Quiescence/Homeostasis, Leading to a Myeloproliferative Neoplasm. Blood, 2011, 118, 46-46.	1.4	1
31	The Mir-23aâ^¼Mir-27aâ^¼Mir-24 Cluster Acts as a Tumor Suppressor In Leukemias by Post-Transcriptional Regulation of 14-3-3 Proteins. Blood, 2010, 116, 3145-3145.	1.4	1
32	Shortened Erythrocyte Life Span and Increased Oxidative Stress In Erythroid Precursors Are Consistent with Normocytic Anemia In Mice with Chronic Inflammation. Blood, 2010, 116, 3205-3205.	1.4	0
33	The YAP Transcriptional Co-Activator Is Not Required for Mouse Hematopoiesis, at Steady State or After 5FU Treatment Blood, 2010, 116, 1592-1592.	1.4	0
34	Sorafenib Treatment Reverses Depletion of Primitive Hematopoietic Stem Cells and Resolves FLT3-ITD Driven Myeloproliferative Disease In a Mouse Model Blood, 2010, 116, 1586-1586.	1.4	0
35	FLT3 Internal Tandem Duplication (ITD) Mutations Disrupt Homeostasis in Hematopoietic Stem Cells Blood, 2009, 114, 1420-1420.	1.4	0
36	Human stem-progenitor cells from neonatal cord blood have greater hematopoietic expansion capacity than those from mobilized adult blood. Experimental Hematology, 2002, 30, 816-823.	0.4	88