Mahesh K Lakshman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6967294/publications.pdf

Version: 2024-02-01

52 papers 1,378 citations

304743 22 h-index 345221 36 g-index

72 all docs 72 docs citations

72 times ranked 1267 citing authors

#	Article	IF	CITATIONS
1	Diversely C8-functionalized adenine nucleosides <i>via</i> their underexplored carboxaldehydes. Chemical Communications, 2022, 58, 1744-1747.	4.1	1
2	Recent developments in the utility of saturated azaheterocycles in peptidomimetics. Organic and Biomolecular Chemistry, 2022, 20, 963-979.	2.8	4
3	General Approach to <i>N</i> ⁶ ,C5′-Difunctionalization of Adenosine. Journal of Organic Chemistry, 2022, 87, 18-39.	3.2	5
4	Catalytic Reductions Without External Hydrogen Gas: Broad Scope Hydrogenations with Tetrahydroxydiboron and a Tertiary Amine. Advanced Synthesis and Catalysis, 2020, 362, 166-176.	4.3	19
5	Synthesis and Evaluations of "1,4â€Triazolyl Combretacoumarins―and Desmethoxy Analogs. European Journal of Organic Chemistry, 2019, 2019, 5610-5623.	2.4	7
6	Facile Modifications at the C4 Position of Pyrimidine Nucleosides <i>via In Situ</i> Amide Activation with 1 <i>H</i> â∈Benzotriazolâ∈1â€yloxyâ€tris(dimethylâ€amino)phosphonium Hexafluorophosphate. Current Protocols in Nucleic Acid Chemistry, 2019, 76, e73.	0.5	2
7	The Disappearing Director: The Case of Directed <i>N</i> â€Arylation <i>via</i> a Removable Hydroxyl Group. Advanced Synthesis and Catalysis, 2018, 360, 2503-2510.	4.3	11
8	When nucleoside chemistry met hypervalent iodine reagents. Arkivoc, 2018, 2018, 252-279.	0.5	2
9	KHF2: A Mild and Selective Desilylating Agent for Phenol tert-ÂButyldimethylsilyl (TBDMS) Ethers. Synlett, 2017, 28, 381-385.	1.8	6
10	Facile functionalization at the C4 position of pyrimidine nucleosides via amide group activation with (benzotriazol-1-yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) and biological evaluations of the products. Organic and Biomolecular Chemistry, 2017, 15, 1130-1139.	2.8	17
11	Benzimidazopurine nucleosides from N ⁶ -aryl adenosine derivatives by Phl(OAc) ₂ -mediated C–N bond formation, no metal needed. Chemical Communications, 2017, 53, 2226-2229.	4.1	13
12	Pdâ€Catalyzed versus Uncatalyzed, PhI(OAc) ₂ â€Mediated Cyclization Reactions of <i>N</i> ⁶ â€([1,1′â€Biaryl]â€2â€yl)Adenine Nucleosides. ChemCatChem, 2017, 9, 4058-4069.	3.7	10
13	Pd-Catalyzed versus Uncatalyzed, PhI(OAc)2 -Mediated Cyclization Reactions of N 6 -([1,1 \hat{a} \in 2-Biaryl]-2-yl)Adenine Nucleosides. ChemCatChem, 2017, 9, 4017-4018.	3.7	O
14	Cross-dehydrogenative coupling and oxidative-amination reactions of ethers and alcohols with aromatics and heteroaromatics. Chemical Science, 2017, 8, 5845-5888.	7.4	116
15	A novel bis(pinacolato)diboron-mediated N–O bond deoxygenative route to C6 benzotriazolyl purine nucleoside derivatives. Organic and Biomolecular Chemistry, 2016, 14, 7069-7083.	2.8	8
16	Ruthenium-Catalyzed Câ€"H Bond Activation Approach to Azolyl Aminals and Hemiaminal Ethers, Mechanistic Evaluations, and Isomer Interconversion. ACS Catalysis, 2016, 6, 1921-1928.	11.2	53
17	Diarylmethanes through an Unprecedented Palladiumâ€Catalyzed Câ^C Crossâ€Coupling of 1â€(Aryl)methoxyâ€1 <i>H</i> à6EBenzotriazoles with Arylboronic Acids. ChemCatChem, 2015, 7, 4156-4162.	3.7	4
18	Cladribine Analogues via O6-(Benzotriazolyl) Derivatives of Guanine Nucleosides. Molecules, 2015, 20, 18437-18463.	3.8	12

#	Article	IF	CITATIONS
19	Cycloaddition of Arynes and Cyclic Enol Ethers as a Platform for Access to Stereochemically Defined 1,2â€Disubstituted Benzocyclobutenes. European Journal of Organic Chemistry, 2015, 2015, 750-764.	2.4	16
20	Modular, Metal-Catalyzed Cycloisomerization Approach to Angularly Fused Polycyclic Aromatic Hydrocarbons and Their Oxidized Derivatives. Journal of Organic Chemistry, 2015, 80, 7435-7446.	3.2	24
21	Mild and General Access to Diverse 1 <i>H</i> â€Benzotriazoles <i>via</i> Diboronâ€Mediated NOH Deoxygenation and Palladium―Catalyzed CC and CN Bond Formation. Advanced Synthesis and Catalysis, 2015, 357, 451-462.	4.3	38
22	Facile synthesis of 1-alkoxy-1 <i>H</i> -benzo- and 7-azabenzotriazoles from peptide coupling agents, mechanistic studies, and synthetic applications. Beilstein Journal of Organic Chemistry, 2014, 10, 1919-1932.	2.2	11
23	Purinyl N1-Directed Aromatic C–H Oxidation in 6-Arylpurines and 6-Arylpurine Nucleosides. Journal of Organic Chemistry, 2013, 78, 7423-7435.	3.2	45
24	Twoâ€Step, Oneâ€Pot Synthesis of Inosine, Guanosine, and 2′â€Deoxyguanosine O 6 â€Ethers via Intermediat â€(Benzotriazolâ€1â€yl) Derivatives. Current Protocols in Nucleic Acid Chemistry, 2012, 49, Unit1.26.	te 0.6	2
25	Synthesis and Biological Properties of C-2 Triazolylinosine Derivatives. Journal of Organic Chemistry, 2012, 77, 5870-5883.	3.2	25
26	Innentitelbild: Direct Arylation of 6-Phenylpurine and 6-Arylpurine Nucleosides by Ruthenium-Catalyzed CH Bond Activation (Angew. Chem. 48/2011). Angewandte Chemie, 2011, 123, 11460-11460.	2.0	0
27	Direct Arylation of 6â€Phenylpurine and 6â€Arylpurine Nucleosides by Rutheniumâ€Catalyzed CH Bond Activation. Angewandte Chemie - International Edition, 2011, 50, 11400-11404.	13.8	99
28	Inside Cover: Direct Arylation of 6-Phenylpurine and 6-Arylpurine Nucleosides by Ruthenium-Catalyzed CH Bond Activation (Angew. Chem. Int. Ed. 48/2011). Angewandte Chemie - International Edition, 2011, 50, 11264-11264.	13.8	0
29	Azideâ^'Tetrazole Equilibrium of C-6 Azidopurine Nucleosides and Their Ligation Reactions with Alkynes. Journal of Organic Chemistry, 2010, 75, 2461-2473.	3.2	73
30	Palladiumâ€Catalyzed Aryl Amination Reactions of 6â€Bromo―and 6â€Chloropurine Nucleosides. Advanced Synthesis and Catalysis, 2010, 352, 1728-1735.	4.3	22
31	One-Pot Etherification of Purine Nucleosides and Pyrimidines. Organic Letters, 2010, 12, 4478-4481.	4.6	29
32	Synthesis of <i>N</i> ⁶ , <i>N</i> ⁶ â€Dialkyladenine Nucleosides Using Hexaalkylphosphorus Triamides Produced in Situ. European Journal of Organic Chemistry, 2009, 2009, 152-159.	2.4	9
33	O 6 â€(Benzotriazolâ€1â€yl)inosine Derivatives for C6 Modification of Purine Nucleosides. Current Protocols in Nucleic Acid Chemistry, 2009, 36, Unit 1.22.	0.5	6
34	A simple method for C-6 modification of guanine nucleosides. Organic and Biomolecular Chemistry, 2009, 7, 2933.	2.8	29
35	Unusual Deoxygenation and Reactivity Studies Related to O6-(Benzotriazol-1-yl)inosine Derivatives. Journal of Organic Chemistry, 2008, 73, 1311-1319.	3.2	57
36	Synthetic Utility of an Isolable Nucleoside Phosphonium Salt. Organic Letters, 2008, 10, 2203-2206.	4.6	23

#	Article	IF	CITATIONS
37	A Novel Polymer Supported Approach to Nucleoside Modification. Journal of Organic Chemistry, 2008, 73, 3707-3713.	3.2	27
38	Highly Diastereoselective Synthesis of Nucleoside Adducts from the Carcinogenic Benzo[a]pyrene Diol Epoxide and a Computational Analysis. Journal of the American Chemical Society, 2007, 129, 68-76.	13.7	14
39	Pd-Catalyzed Câ^'C Bond-Forming Reactions of Thymidine Mesitylene Sulfonate. Journal of Organic Chemistry, 2007, 72, 5724-5730.	3.2	16
40	O6-(Benzotriazol-1-yl)inosine Derivatives:Â Easily Synthesized, Reactive Nucleosides. Journal of the American Chemical Society, 2007, 129, 782-789.	13.7	70
41	Pdâ^'Xantphos-Catalyzed Direct Arylation of Nucleosides. Organic Letters, 2006, 8, 4613-4616.	4.6	29
42	Mild and Room Temperature Câ^'C Bond Forming Reactions of Nucleoside C-6 Arylsulfonates. Journal of Organic Chemistry, 2005, 70, 10329-10335.	3.2	34
43	Palladium-Catalyzed Synthesis of Carcinogenic Polycyclic Aromatic Hydrocarbon Epoxide-Nucleoside Adducts:  The First Amination of a Chloro Nucleoside1. Organic Letters, 2003, 5, 39-42.	4.6	30
44	Synthesis of Pyrene and Benzo[a]pyrene Adducts at the Exocyclic Amino Groups of 2â€⁻-Deoxyadenosine and 2â€⁻-Deoxyguanosine by a Palladium-Mediated Câ⁻¹N Bond-Formation Strategy. Journal of Organic Chemistry, 2003, 68, 6020-6030.	3.2	20
45	Facile Pd-Catalyzed Cross-Coupling of 2â€~-DeoxyguanosineO6-Arylsulfonates with Arylboronic Acids. Organic Letters, 2002, 4, 1479-1482.	4.6	74
46	Facile Synthesis of O6-Alkyl-, O6-Aryl-, and Diaminopurine Nucleosides from 2 -Deoxyguanosine. Organic Letters, 2000, 2, 927-930.	4.6	41
47	Palladium-Catalyzed Câ^'N Bond Formation: Facile and General Synthesis ofN6-Aryl 2â€~-Deoxyadenosine Analogues. Journal of the American Chemical Society, 1999, 121, 6090-6091.	13.7	98
48	Sequence Context Profoundly Influences the Mutagenic Potency of Trans-Opened Benzo[a]pyrene 7,8-Diol 9,10-Epoxideâ^Purine Nucleoside Adducts in Site-Specific Mutation Studiesâ€. Biochemistry, 1998, 37, 9127-9137.	2.5	90
49	Effects of Polycyclic Aromatic Hydrocarbon Adducts with Deoxyguanosine and Deoxyadenosine <i>in vivo</i> and <i>in vitro</i> . Polycyclic Aromatic Compounds, 1996, 10, 171-178.	2.6	0
50	Improved High-Yield Synthesis of Polycyclic Aromatic Hydrocarbon Amino Tribenzoates, Nucleophilic Components for Synthesis of Diol Epoxide-Nucleoside Adducts. Synthetic Communications, 1994, 24, 2983-2988.	2.1	8
51	Synthesis of 1,2-Epoxy-1,2,3,4-Tetrahydrobenzo [$\langle i \rangle g \langle i \rangle$] chrysene: The First Synthesis of a $\langle i \rangle$ FJORD $\langle i \rangle$ -Region Tetrahydroepoxide. Synthetic Communications, 1994, 24, 2973-2981.	2.1	2
52	Solvent Dependent Changes in the Proton NMR Spectra of 2′-Deoxyadenosine and Its Derivatives. Nucleosides & Nucleotides, 1992, 11, 1039-1046.	0.5	6