Bertrand Reuillard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6966415/publications.pdf

Version: 2024-02-01

29 papers 2,096 citations

394421 19 h-index 27 g-index

29 all docs 29 docs citations

times ranked

29

3234 citing authors

#	Article	IF	CITATIONS
1	Impact of ionomer structuration on the performance of bio-inspired noble-metal-free fuel cell anodes. Chem Catalysis, 2021, 1, 88-105.	6.1	14
2	Approaching Industrially Relevant Current Densities for Hydrogen Oxidation with a Bioinspired Molecular Catalytic Material. Journal of the American Chemical Society, 2021, 143, 18150-18158.	13.7	16
3	How do H ₂ oxidation molecular catalysts assemble onto carbon nanotube electrodes? A crosstalk between electrochemical and multi-physical characterization techniques. Chemical Science, 2021, 12, 15916-15927.	7.4	5
4	Noncovalent Integration of a Bioinspired Ni Catalyst to Graphene Acid for Reversible Electrocatalytic Hydrogen Oxidation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 5805-5811.	8.0	28
5	Bias-free solar syngas production by integrating a molecular cobalt catalyst with perovskite–BiVO4 tandems. Nature Materials, 2020, 19, 189-194.	27.5	175
6	A Diethyleneglycolâ€Pyreneâ€Modified Ru(II) Catalyst for the Design of Buckypaper Bioelectrodes and the Wiring of Glucose Dehydrogenases. ChemElectroChem, 2019, 6, 3621-3626.	3.4	13
7	Electro- and Solar-Driven Fuel Synthesis with First Row Transition Metal Complexes. Chemical Reviews, 2019, 119, 2752-2875.	47.7	615
8	High Performance Reduction of H ₂ O ₂ with an Electron Transport Decaheme Cytochrome on a Porous ITO Electrode. Journal of the American Chemical Society, 2017, 139, 3324-3327.	13.7	41
9	Tuning Product Selectivity for Aqueous CO ₂ Reduction with a Mn(bipyridine)-pyrene Catalyst Immobilized on a Carbon Nanotube Electrode. Journal of the American Chemical Society, 2017, 139, 14425-14435.	13.7	185
10	Carbon Dots as Versatile Photosensitizers for Solar-Driven Catalysis with Redox Enzymes. Journal of the American Chemical Society, 2016, 138, 16722-16730.	13.7	189
11	A Poly(cobaloxime)/Carbon Nanotube Electrode: Freestanding Buckypaper with Polymerâ€Enhanced H ₂ â€Evolution Performance. Angewandte Chemie, 2016, 128, 4020-4025.	2.0	22
12	A Poly(cobaloxime)/Carbon Nanotube Electrode: Freestanding Buckypaper with Polymerâ€Enhanced H ₂ â€Evolution Performance. Angewandte Chemie - International Edition, 2016, 55, 3952-3957.	13.8	86
13	A decahaem cytochrome as an electron conduit in protein–enzyme redox processes. Chemical Communications, 2016, 52, 7390-7393.	4.1	15
14	Osmium(II) Complexes Bearing Chelating N-Heterocyclic Carbene and Pyrene-Modified Ligands: Surface Electrochemistry and Electron Transfer Mediation of Oxygen Reduction by Multicopper Enzymes. Organometallics, 2016, 35, 2987-2992.	2.3	22
15	One-year stability for a glucose/oxygen biofuel cell combined with pH reactivation of the laccase/carbon nanotube biocathode. Bioelectrochemistry, 2015, 106, 73-76.	4.6	57
16	Biomimetic versus enzymatic high-potential electrocatalytic reduction of hydrogen peroxide on a functionalized carbon nanotube electrode. Chemical Science, 2015, 6, 5139-5143.	7.4	31
17	Labelâ€Free Photoelectrochemical Detection of Doubleâ€Stranded HIV DNA by Means of a Metallointercalatorâ€Functionalized Electrogenerated Polymer. Chemistry - A European Journal, 2014, 20, 15555-15560.	3.3	18
18	Supercapacitor/biofuel cell hybrids based on wired enzymes on carbon nanotube matrices: autonomous reloading after high power pulses in neutral buffered glucose solutions. Energy and Environmental Science, 2014, 7, 1884-1888.	30.8	117

#	Article	IF	CITATIONS
19	Non-covalent functionalization of carbon nanotubes with boronic acids for the wiring of glycosylated redox enzymes in oxygen-reducing biocathodes. Journal of Materials Chemistry B, 2014, 2, 2228-2232.	5.8	45
20	Non-covalent double functionalization of carbon nanotubes with a NADH oxidation Ru(<scp>ii</scp>)-based molecular catalyst and a NAD-dependent glucose dehydrogenase. Chemical Communications, 2014, 50, 11731-11734.	4.1	43
21	Polypyrrolic Bipyridine Bis(phenantrolinequinone) Ru(II) Complex/Carbon Nanotube Composites for NAD-Dependent Enzyme Immobilization and Wiring. Analytical Chemistry, 2014, 86, 4409-4415.	6.5	25
22	Electrochemical nanopatterning of an electrogenerated photosensitive poly-[trisbipyridinyl-pyrrole ruthenium(II)] metallopolymer by nanosphere lithography. Electrochemistry Communications, 2014, 46, 75-78.	4.7	10
23	Oligosaccharide biosensor for direct monitoring of enzymatic activities using QCM-D. Biosensors and Bioelectronics, 2013, 49, 290-296.	10.1	14
24	A double-walled carbon nanotube-based glucose/H2O2 biofuel cell operating under physiological conditions. Electrochemistry Communications, 2013, 34, 105-108.	4.7	58
25	High power enzymatic biofuel cell based on naphthoquinone-mediated oxidation of glucose by glucose oxidase in a carbon nanotube 3D matrix. Physical Chemistry Chemical Physics, 2013, 15, 4892.	2.8	154
26	A Pyrene-Substituted Tris(bipyridine)osmium(II) Complex as a Versatile Redox Probe for Characterizing and Functionalizing Carbon Nanotube- and Graphene-Based Electrodes. Langmuir, 2013, 29, 8736-8742.	3.5	52
27	Direct electron transfer between tyrosinase and multi-walled carbon nanotubes for bioelectrocatalytic oxygen reduction. Electrochemistry Communications, 2012, 20, 19-22.	4.7	46
28	Scalable Photoelectrochemical Perovskite-BiVO4 Tandem Devices for Solar Fuel Synthesis., 0,,.		0
29	Scalable Photoelectrochemical Perovskite-BiVO4 Tandem Devices for Solar Fuel Synthesis., 0,,.		0