
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6966400/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy, 2016, 12, 1-222.	4.3	4,701
2	Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy, 2012, 8, 445-544.	4.3	3,122
3	Invited Review: Contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology, 2001, 90, 1137-1157.	1.2	600
4	Mitochondrial function and apoptotic susceptibility in aging skeletal muscle. Aging Cell, 2008, 7, 2-12.	3.0	357
5	Interactions between ROS and AMP kinase activity in the regulation of PGC-1α transcription in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2009, 296, C116-C123.	2.1	306
6	Coordination of metabolic plasticity in skeletal muscle. Journal of Experimental Biology, 2006, 209, 2265-2275.	0.8	301
7	Maintenance of Skeletal Muscle Mitochondria in Health, Exercise, and Aging. Annual Review of Physiology, 2019, 81, 19-41.	5.6	300
8	PPARγ coactivator-1α expression during thyroid hormone- and contractile activity-induced mitochondrial adaptations. American Journal of Physiology - Cell Physiology, 2003, 284, C1669-C1677.	2.1	280
9	Role of PGC-1α during acute exercise-induced autophagy and mitophagy in skeletal muscle. American Journal of Physiology - Cell Physiology, 2015, 308, C710-C719.	2.1	213
10	Effect of denervation on mitochondrially mediated apoptosis in skeletal muscle. Journal of Applied Physiology, 2007, 102, 1143-1151.	1.2	203
11	Mechanisms of exercise-induced mitochondrial biogenesis in skeletal muscleThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise ConferenceA– Muscles as Molecular and Metabolic Machines, and has undergone the Journal's usual peer review process Applied Physiology, Nutrition and Metabolism, 2009, 34, 465-472.	0.9	189
12	AMP-Activated Protein Kinase-Regulated Activation of the PGC-1α Promoter in Skeletal Muscle Cells. PLoS ONE, 2008, 3, e3614.	1.1	175
13	Regulation of Mitochondrial Biogenesis in Muscle by Endurance Exercise. Sports Medicine, 2003, 33, 783-793.	3.1	159
14	Role of p53 in mitochondrial biogenesis and apoptosis in skeletal muscle. Physiological Genomics, 2009, 37, 58-66.	1.0	159
15	A systematic review of p53 regulation of oxidative stress in skeletal muscle. Redox Report, 2018, 23, 100-117.	1.4	151
16	The role of PGC-1α on mitochondrial function and apoptotic susceptibility in muscle. American Journal of Physiology - Cell Physiology, 2009, 297, C217-C225.	2.1	148
17	Chronic stimulation of rat skeletal muscle induces coordinate increases in mitochondrial and nuclear mRNAs of cytochrome-c-oxidase subunits. FEBS Journal, 1989, 179, 275-280.	0.2	142
18	Selected Contribution: Effects of contractile activity on mitochondrial transcription factor A expression in skeletal muscle. Journal of Applied Physiology, 2001, 90, 389-396.	1.2	141

#	Article	IF	CITATIONS
19	Differential susceptibility of subsarcolemmal and intermyofibrillar mitochondria to apoptotic stimuli. American Journal of Physiology - Cell Physiology, 2005, 289, C994-C1001.	2.1	141
20	Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: Effects of exercise and aging. Biochimica Et Biophysica Acta - General Subjects, 2010, 1800, 223-234.	1.1	141
21	Plasticity of Skeletal Muscle Mitochondria in Response to Contractile Activity. Experimental Physiology, 2003, 88, 99-107.	0.9	139
22	PGC-1α modulates denervation-induced mitophagy in skeletal muscle. Skeletal Muscle, 2015, 5, 9.	1.9	136
23	Expression of mitochondrial fission and fusion regulatory proteins in skeletal muscle during chronic use and disuse. Muscle and Nerve, 2013, 48, 963-970.	1.0	135
24	Sirtuin 1-mediated Effects of Exercise and Resveratrol on Mitochondrial Biogenesis. Journal of Biological Chemistry, 2013, 288, 6968-6979.	1.6	134
25	Mitochondria, Muscle Health, and Exercise with Advancing Age. Physiology, 2015, 30, 208-223.	1.6	133
26	Apoptosis in Heart and Skeletal Muscle. Applied Physiology, Nutrition, and Metabolism, 2002, 27, 349-395.	1.7	132
27	Exercise and mitochondrial health. Journal of Physiology, 2021, 599, 803-817.	1.3	131
28	Exercise induces a cardiac mitochondrial phenotype that resists apoptotic stimuli. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 294, H928-H935.	1.5	130
29	Adaptive plasticity of autophagic proteins to denervation in aging skeletal muscle. American Journal of Physiology - Cell Physiology, 2013, 304, C422-C430.	2.1	130
30	Contractile activity-induced adaptations in the mitochondrial protein import system. American Journal of Physiology - Cell Physiology, 1998, 274, C1380-C1387.	2.1	124
31	Unravelling the mechanisms regulating muscle mitochondrial biogenesis. Biochemical Journal, 2016, 473, 2295-2314.	1.7	124
32	Acute exercise induces tumour suppressor protein p53 translocation to the mitochondria and promotes a p53–Tfam–mitochondrial DNA complex in skeletal muscle. Journal of Physiology, 2013, 591, 3625-3636.	1.3	113
33	Protein Import into Subsarcolemmal and Intermyofibrillar Skeletal Muscle Mitochondria. Journal of Biological Chemistry, 1996, 271, 27285-27291.	1.6	111
34	Impact of Aging and Exercise on Mitochondrial Quality Control in Skeletal Muscle. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-16.	1.9	105
35	Autophagy and mitophagy flux in young and aged skeletal muscle following chronic contractile activity. Journal of Physiology, 2018, 596, 3567-3584.	1.3	100
36	Mitochondrial Dysregulation in the Pathogenesis of Diabetes: Potential for Mitochondrial Biogenesis-Mediated Interventions. Experimental Diabetes Research, 2012, 2012, 1-16.	3.8	94

#	Article	IF	CITATIONS
37	The regulation of autophagy during exercise in skeletal muscle. Journal of Applied Physiology, 2016, 120, 664-673.	1.2	91
38	Control of gene expression and mitochondrial biogenesis in the muscular adaptation to endurance exercise. Essays in Biochemistry, 2006, 42, 13-29.	2.1	91
39	Calcium-dependent Regulation of Cytochromec Gene Expression in Skeletal Muscle Cells. Journal of Biological Chemistry, 1999, 274, 9305-9311.	1.6	88
40	Oxidative stress-induced mitochondrial fragmentation and movement in skeletal muscle myoblasts. American Journal of Physiology - Cell Physiology, 2014, 306, C1176-C1183.	2.1	87
41	Denervation-induced mitochondrial dysfunction and autophagy in skeletal muscle of apoptosis-deficient animals. American Journal of Physiology - Cell Physiology, 2012, 303, C447-C454.	2.1	83
42	Mechanisms of Exerciseâ€Induced Mitochondrial Biogenesis in Skeletal Muscle: Implications for Health and Disease. , 2011, 1, 1119-1134.		79
43	The importance of PGC-1α in contractile activity-induced mitochondrial adaptations. American Journal of Physiology - Endocrinology and Metabolism, 2011, 300, E361-E371.	1.8	78
44	Exercise induces TFEB expression and activity in skeletal muscle in a PGC-1α-dependent manner. American Journal of Physiology - Cell Physiology, 2018, 314, C62-C72.	2.1	77
45	Molecular basis for an attenuated mitochondrial adaptive plasticity in aged skeletal muscle. Aging, 2009, 1, 818-830.	1.4	77
46	Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle. Skeletal Muscle, 2018, 8, 10.	1.9	76
47	Origins and Consequences of Mitochondrial Variation in Vertebrate Muscle. Annual Review of Physiology, 2003, 65, 177-201.	5.6	75
48	Parkin is required for exercise-induced mitophagy in muscle: impact of aging. American Journal of Physiology - Endocrinology and Metabolism, 2018, 315, E404-E415.	1.8	73
49	Negligible direct lactate oxidation in subsarcolemmal and intermyofibrillar mitochondria obtained from red and white rat skeletal muscle. Journal of Physiology, 2007, 582, 1317-1335.	1.3	72
50	Diminished contractionâ€induced intracellular signaling towards mitochondrial biogenesis in aged skeletal muscle. Aging Cell, 2009, 8, 394-404.	3.0	69
51	Compensatory responses of protein import and transcription factor expression in mitochondrial DNA defects. American Journal of Physiology - Cell Physiology, 2004, 286, C867-C875.	2.1	67
52	Thyroid hormone (T ₃) rapidly activates p38 and AMPK in skeletal muscle in vivo. Journal of Applied Physiology, 2008, 104, 178-185.	1.2	65
53	The role of Nrf2 in skeletal muscle contractile and mitochondrial function. Journal of Applied Physiology, 2016, 121, 730-740.	1.2	65
54	p53 is necessary for the adaptive changes in cellular milieu subsequent to an acute bout of endurance exercise. American Journal of Physiology - Cell Physiology, 2014, 306, C241-C249.	2.1	64

#	Article	IF	CITATIONS
55	Thyroid hormone modifies mitochondrial phenotype by increasing protein import without altering degradation. American Journal of Physiology - Cell Physiology, 1998, 275, C1508-C1515.	2.1	63
56	Denervation-induced oxidative stress and autophagy signaling in muscle. Autophagy, 2009, 5, 230-231.	4.3	62
57	The effect of training on the expression of mitochondrial biogenesis- and apoptosis-related proteins in skeletal muscle of patients with mtDNA defects. American Journal of Physiology - Endocrinology and Metabolism, 2007, 293, E672-E680.	1.8	61
58	Effect of chronic contractile activity on SS and IMF mitochondrial apoptotic susceptibility in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 2007, 292, E748-E755.	1.8	60
59	Ageâ€associated mitochondrial dysfunction in skeletal muscle: Contributing factors and suggestions for longâ€ŧerm interventions. IUBMB Life, 2009, 61, 201-214.	1.5	57
60	Calcium-regulated changes in mitochondrial phenotype in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2004, 286, C1053-C1061.	2.1	56
61	Tissue-specific regulation of cytochromecoxidase subunit expression by thyroid hormone. American Journal of Physiology - Endocrinology and Metabolism, 2004, 286, E968-E974.	1.8	55
62	Relationship between Sirt1 expression and mitochondrial proteins during conditions of chronic muscle use and disuse. Journal of Applied Physiology, 2009, 107, 1730-1735.	1.2	54
63	Contractile Activity-induced Transcriptional Activation of Cytochrome c Involves Sp1 and Is Proportional to Mitochondrial ATP Synthesis in C2C12 Muscle Cells. Journal of Biological Chemistry, 2001, 276, 15898-15904.	1.6	53
64	Amino Acid Metabolism During Exercise and Following Endurance Training. Sports Medicine, 1990, 9, 23-35.	3.1	52
65	Multiple signaling pathways regulate contractile activity-mediated PGC-1 <i>α</i> gene expression and activity in skeletal muscle cells. Physiological Reports, 2014, 2, e12008.	0.7	52
66	Effect of denervation-induced muscle disuse on mitochondrial protein import. American Journal of Physiology - Cell Physiology, 2011, 300, C138-C145.	2.1	50
67	Endurance training ameliorates the metabolic and performance characteristics of circadian <i>Clock</i> mutant mice. Journal of Applied Physiology, 2013, 114, 1076-1084.	1.2	48
68	Tissue-Specific Stability of Nuclear- and Mitochondrially Encoded mRNAs. Archives of Biochemistry and Biophysics, 1996, 333, 103-108.	1.4	47
69	Role of p53 Within the Regulatory Network Controlling Muscle Mitochondrial Biogenesis. Exercise and Sport Sciences Reviews, 2011, 39, 199-205.	1.6	46
70	Mitochondrial Biogenesis and the Role of the Protein Import Pathway. Medicine and Science in Sports and Exercise, 2003, 35, 86-94.	0.2	45
71	Chronology of UPR activation in skeletal muscle adaptations to chronic contractile activity. American Journal of Physiology - Cell Physiology, 2016, 310, C1024-C1036.	2.1	45
72	The role of SirT1 in muscle mitochondrial turnover. Mitochondrion, 2012, 12, 5-13.	1.6	44

#	Article	IF	CITATIONS
73	Assembly of the cellular powerhouse: current issues in muscle mitochondrial biogenesis. Exercise and Sport Sciences Reviews, 2000, 28, 68-73.	1.6	44
74	Effect of thyroid hormone on mitochondrial properties and oxidative stress in cells from patients with mtDNA defects. American Journal of Physiology - Cell Physiology, 2009, 296, C355-C362.	2.1	43
75	Mitochondrial dysfunction is associated with a pro-apoptotic cellular environment in senescent cardiac muscle. Mechanisms of Ageing and Development, 2010, 131, 79-88.	2.2	43
76	Specific attenuation of protein kinase phosphorylation in muscle with a high mitochondrial content. American Journal of Physiology - Endocrinology and Metabolism, 2009, 297, E749-E758.	1.8	41
77	Effect of chronic contractile activity on mRNA stability in skeletal muscle. American Journal of Physiology - Cell Physiology, 2010, 299, C155-C163.	2.1	41
78	Tom20-mediated mitochondrial protein import in muscle cells during differentiation. American Journal of Physiology - Cell Physiology, 2000, 279, C1393-C1400.	2.1	40
79	Regulation of Egr-1, SRF, and Sp1 mRNA expression in contracting skeletal muscle cells. Journal of Applied Physiology, 2004, 97, 2207-2213.	1.2	40
80	Role of UCP3 in state 4 respiration during contractile activity-induced mitochondrial biogenesis. Journal of Applied Physiology, 2004, 97, 976-983.	1.2	40
81	Exercise-induced mitochondrial biogenesis in skeletal muscle. Nutrition, Metabolism and Cardiovascular Diseases, 2007, 17, 332-337.	1.1	40
82	Effect of prior chronic contractile activity on mitochondrial function and apoptotic protein expression in denervated muscle. Journal of Applied Physiology, 2008, 105, 114-120.	1.2	39
83	Contractile activity attenuates autophagy suppression and reverses mitochondrial defects in skeletal muscle cells. Autophagy, 2018, 14, 1886-1897.	4.3	39
84	Looking beyond PGC-1α: emerging regulators of exercise-induced skeletal muscle mitochondrial biogenesis and their activation by dietary compounds. Applied Physiology, Nutrition and Metabolism, 2020, 45, 11-23.	0.9	39
85	Mitochondrial Biogenesis in Striated Muscle. Applied Physiology, Nutrition, and Metabolism, 1994, 19, 12-48.	1.7	37
86	Effect of hypothyroidism on the expression of cytochrome c and cytochrome c oxidase in heart and muscle during development. Molecular and Cellular Biochemistry, 1995, 143, 119-127.	1.4	37
87	Application of Animal Models: Chronic Electrical Stimulation-Induced Contractile Activity. Applied Physiology, Nutrition, and Metabolism, 2005, 30, 625-643.	1.7	37
88	Exercise and the Regulation of Mitochondrial Turnover. Progress in Molecular Biology and Translational Science, 2015, 135, 99-127.	0.9	37
89	How is Mitochondrial Biogenesis Affected in Mitochondrial Disease?. Medicine and Science in Sports and Exercise, 2005, 37, 2102-2110.	0.2	36
90	Kinase-specific responsiveness to incremental contractile activity in skeletal muscle with low and high mitochondrial content. American Journal of Physiology - Endocrinology and Metabolism, 2008, 295, E195-E204.	1.8	36

#	Article	IF	CITATIONS
91	Mitochondrial assembly: protein import. Proceedings of the Nutrition Society, 2004, 63, 293-300.	0.4	35
92	Contractile activity-induced mitochondrial biogenesis and mTORC1. American Journal of Physiology - Cell Physiology, 2012, 303, C540-C547.	2.1	34
93	The role of mitochondrial fusion and fission in skeletal muscle function and dysfunction. Frontiers in Bioscience - Landmark, 2015, 20, 157-172.	3.0	34
94	Mitochondria in Skeletal Muscle. Exercise and Sport Sciences Reviews, 2008, 36, 116-121.	1.6	33
95	Function of specialized regulatory proteins and signaling pathways in exercise-induced muscle mitochondrial biogenesis. Integrative Medicine Research, 2016, 5, 187-197.	0.7	33
96	Biogenesis of the mitochondrial Tom40 channel in skeletal muscle from aged animals and its adaptability to chronic contractile activity. American Journal of Physiology - Cell Physiology, 2010, 298, C1308-C1314.	2.1	32
97	Effects of endurance training on apoptotic susceptibility in striated muscle. Journal of Applied Physiology, 2011, 110, 1638-1645.	1.2	32
98	Chronic long-term electrostimulation creates a unique metabolic enzyme profile in rabbit fast-twitch muscle. FEBS Letters, 1989, 247, 471-474.	1.3	31
99	The regulation of mitochondrial transcription factor A (Tfam) expression during skeletal muscle cell differentiation. Bioscience Reports, 2015, 35, .	1.1	31
100	Effect of p53 on mitochondrial morphology, import, and assembly in skeletal muscle. American Journal of Physiology - Cell Physiology, 2015, 308, C319-C329.	2.1	31
101	Effect of denervation on the regulation of mitochondrial transcription factor A expression in skeletal muscle. American Journal of Physiology - Cell Physiology, 2015, 309, C228-C238.	2.1	29
102	Recent advances in mitochondrial turnover during chronic muscle disuse. Integrative Medicine Research, 2014, 3, 161-171.	0.7	28
103	Effect of contractile activity on PGC-1α transcription in young and aged skeletal muscle. Journal of Applied Physiology, 2018, 124, 1605-1615.	1.2	28
104	The intersection of exercise and aging on mitochondrial protein quality control. Experimental Gerontology, 2020, 131, 110824.	1.2	28
105	Relationships between Exercise, Mitochondrial Biogenesis and Type 2 Diabetes. Medicine and Sport Science, 2014, 60, 48-61.	1.4	27
106	Mitochondrial Bioenergetics and Turnover during Chronic Muscle Disuse. International Journal of Molecular Sciences, 2021, 22, 5179.	1.8	27
107	Mitochondrial breakdown in skeletal muscle and the emerging role of the lysosomes. Archives of Biochemistry and Biophysics, 2019, 661, 66-73.	1.4	26
108	Effect of microgravity on the expression of mitochondrial enzymes in rat cardiac and skeletal muscles. Journal of Applied Physiology, 1998, 84, 593-598.	1.2	25

#	Article	IF	CITATIONS
109	Effect of Age on the Processing and Import of Matrix-Destined Mitochondrial Proteins in Skeletal Muscle. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2010, 65A, 138-146.	1.7	25
110	Altered mitochondrial morphology and defective protein import reveal novel roles for Bax and/or Bak in skeletal muscle. American Journal of Physiology - Cell Physiology, 2013, 305, C502-C511.	2.1	25
111	Regulation of the autophagy system during chronic contractile activity-induced muscle adaptations. Physiological Reports, 2017, 5, e13307.	0.7	25
112	Effect of contractile activity on protein turnover in skeletal muscle mitochondrial subfractions. Journal of Applied Physiology, 2000, 88, 1601-1606.	1.2	24
113	The effects of chronic muscle use and disuse on cardiolipin metabolism. Journal of Applied Physiology, 2013, 114, 444-452.	1.2	24
114	Regulation of autophagic and mitophagic flux during chronic contractile activity-induced muscle adaptations. Pflugers Archiv European Journal of Physiology, 2019, 471, 431-440.	1.3	24
115	Regulation of PPAR <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>γ</mml:mi>Coactivator-1<mml:ma xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>α</mml:mi>Function and Expression in Muscle: Effect of Exercise. PPAR Research. 2010. 2010. 1-7.</mml:ma </mml:math 	ath 1.1	23
116	Cytochrome c transcriptional activation and mRNA stability during contractile activity in skeletal muscle. American Journal of Physiology - Endocrinology and Metabolism, 1999, 277, E26-E32.	1.8	22
117	The Role of p53 in Determining Mitochondrial Adaptations to Endurance Training in Skeletal Muscle. Scientific Reports, 2018, 8, 14710.	1.6	21
118	Effect of Tim23 knockdown in vivo on mitochondrial protein import and retrograde signaling to the UPR ^{mt} in muscle. American Journal of Physiology - Cell Physiology, 2018, 315, C516-C526.	2.1	21
119	Manifestations of Age on Autophagy, Mitophagy and Lysosomes in Skeletal Muscle. Cells, 2021, 10, 1054.	1.8	21
120	Timeâ€dependent changes in autophagy, mitophagy and lysosomes in skeletal muscle during denervationâ€induced disuse. Journal of Physiology, 2022, 600, 1683-1701.	1.3	21
121	p53 regulates skeletal muscle mitophagy and mitochondrial quality control following denervation-induced muscle disuse. Journal of Biological Chemistry, 2022, 298, 101540.	1.6	21
122	Regulatory networks coordinating mitochondrial quality control in skeletal muscle. American Journal of Physiology - Cell Physiology, 2022, 322, C913-C926.	2.1	21
123	Mitochondrial actaptations to chronic muscle use: Effect of iron deficiency. Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 101, 597-605.	0.7	20
124	Mitochondrial biogenesis during pressure overload induced cardiac hypertrophy in adult rats. Canadian Journal of Physiology and Pharmacology, 1995, 73, 630-637.	0.7	20
125	Cytoskeletal regulation of mitochondrial movements in myoblasts. Cytoskeleton, 2014, 71, 564-572.	1.0	20
126	The unfolded protein response in relation to mitochondrial biogenesis in skeletal muscle cells. American Journal of Physiology - Cell Physiology, 2017, 312, C583-C594.	2.1	20

#	Article	IF	CITATIONS
127	The influence of age, sex, and exercise on autophagy, mitophagy, and lysosome biogenesis in skeletal muscle. Skeletal Muscle, 2022, 12, .	1.9	20
128	Altered Expression of Mitoferrin and Frataxin, Larger Labile Iron Pool and Greater Mitochondrial DNA Damage in the Skeletal Muscle of Older Adults. Cells, 2020, 9, 2579.	1.8	18
129	mRNA stability as a function of striated muscle oxidative capacity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R408-R417.	0.9	17
130	Plasticity of TOM complex assembly in skeletal muscle mitochondria in response to chronic contractile activity. Mitochondrion, 2012, 12, 305-312.	1.6	14
131	Exercise is mitochondrial medicine for muscle. Sports Medicine and Health Science, 2019, 1, 11-18.	0.7	13
132	Exercise Is Muscle Mitochondrial Medicine. Exercise and Sport Sciences Reviews, 2021, 49, 67-76.	1.6	13
133	Zidovudine (AZT) induced alterations in mitochondrial biogenesis in rat striated muscles. Canadian Journal of Physiology and Pharmacology, 1999, 77, 29-35.	0.7	12
134	Events upstream of mitochondrial protein import limit the oxidative capacity of fibroblasts in multiple mitochondrial disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2002, 1586, 146-154.	1.8	12
135	Examining interindividual differences in select muscle and wholeâ€body adaptations to continuous endurance training. Experimental Physiology, 2021, 106, 2168-2176.	0.9	11
136	Effect of rapamycin on mitochondria and lysosomes in fibroblasts from patients with mtDNA mutations. American Journal of Physiology - Cell Physiology, 2021, 321, C176-C186.	2.1	10
137	Molecular Basis for the Therapeutic Effects of Exercise on Mitochondrial Defects. Frontiers in Physiology, 2020, 11, 615038.	1.3	9
138	Mitochondrial protein import and UPRmt in skeletal muscle remodeling and adaptation. Seminars in Cell and Developmental Biology, 2023, 143, 28-36.	2.3	9
139	Endurance training alters alanine and glutamine release from muscle during contractions. FEBS Letters, 1994, 340, 287-290.	1.3	8
140	Incorporation of 15N-leucine amine into ATP of fast-twitch muscle following stimulation. Biochemical and Biophysical Research Communications, 1985, 128, 1254-1260.	1.0	7
141	Commentaries on Viewpoint: The rigorous study of exercise adaptations: Why mRNA might not be enough. Journal of Applied Physiology, 2016, 121, 597-600.	1.2	6
142	Muscle mitochondrial ultrastructure: new insights into morphological divergences. Journal of Applied Physiology, 2013, 114, 159-160.	1.2	5
143	711 INHIBITION OF NUCLEAR GENE TRANSCRIPTION IN CHRONICALLY STIMULATED MUSCLE. Medicine and Science in Sports and Exercise, 1993, 25, S128.	0.2	4
144	Commentaries on Viewpoint: Does SIRT1 determine exercise-induced skeletal muscle mitochondrial biogenesis: differences between in vitro and in vivo experiments?. Journal of Applied Physiology, 2012, 112, 929-930.	1.2	2

#	Article	IF	CITATIONS
145	Mitophagy Regulation in Skeletal Muscle: Effect of Endurance Exercise and Age. Journal of Science in Sport and Exercise, 2019, 1, 228-236.	0.4	2
146	Human cardiac ischemiaâ€reperfusion injury: Blunted stress response with age. Journal of Cardiac Surgery, 2021, 36, 3643-3651.	0.3	2
147	Exercise-Induced Mitochondrial Biogenesis in Skeletal Muscle. , 2007, , 37-60.		2
148	383 PROTEIN IMPORT INTO SKELETAL MUSCLE MITOCHONDRIA. Medicine and Science in Sports and Exercise, 1994, 26, S68.	0.2	1
149	530 TISSUE-SPECIFIC REGULATION OF mRNA STABILITY. Medicine and Science in Sports and Exercise, 1994, 26, S94.	0.2	1
150	Mechanisms of Mitochondrial Disease and the Role of Exercise: A Symposium. Medicine and Science in Sports and Exercise, 2005, 37, 2084-2085.	0.2	1
151	Skeletal muscle stem cells: a symposium. Applied Physiology, Nutrition and Metabolism, 2006, 31, 771-772.	0.9	1
152	Application of Chronic Stimulation to Study Contractile Activity-induced Rat Skeletal Muscle Phenotypic Adaptations. Journal of Visualized Experiments, 2018, , .	0.2	1
153	814 CONTRACTILE AND METABOLIC RESPONSE OF RAT FAST-TWITCH SKELETAL MUSCLE TO 10 Hz STIMULATION. Medicine and Science in Sports and Exercise, 1990, 22, S136.	0.2	0
154	44 DENERVATION-INDUCED CHANGES IN MUSCLE MITOCHONDRIAL PROTEINS AND PHOSPHOLIPIDS: RELATIONSHIP TO ENDURANCE PERFORMANCE. Medicine and Science in Sports and Exercise, 1990, 22, S8.	0.2	0
155	EFFECT OF CARDIAC HYPERTROPHY ON CYTOCHROME C OXIDASE ACTIVITY AND mRNA EXPRESSION. Medicine and Science in Sports and Exercise, 1992, 24, S20.	0.2	0
156	Signal Transduction and Gene Expression in Striated Muscles: A Symposium. Applied Physiology, Nutrition, and Metabolism, 1998, 23, 362-365.	1.7	0
157	Cell Death Regulation in Muscle. , 0, , 313-322.		0
158	One Bout of Aerobic Exercise Elicits Alterations in The Expression of Mitochondrial Unfolded Protein Response (UPRmt) Markers in Skeletal Muscle. FASEB Journal, 2021, 35, .	0.2	0
159	Regulation of the NAD + â€dependent histone deacetylase Sirt1 in conditions of muscle use and disuse. FASEB Journal, 2006, 20, A389.	0.2	0
160	Effect of denervation on mitochondrial function and the expression of apoptotic related proteins. FASEB Journal, 2006, 20, A388.	0.2	0
161	Comparison of skeletal muscle mitochondrial properties isolated by protease digestion and mechanical homogenization. FASEB Journal, 2006, 20, .	0.2	0
162	AMPâ€activated protein kinaseâ€regulated activation of the PGCâ€1α promoter in skeletal muscle cells. FASEB Journal, 2006, 20, A389.	0.2	0

#	Article	IF	CITATIONS
163	Tissueâ€specific regulation of cell signaling by acute thyroid hormone treatment <i>in vivo</i> . FASEB Journal, 2006, 20, A821.	0.2	0
164	Mitochondrial function and protein expression profile in skeletal muscle from PGCâ€lα null mice. FASEB Journal, 2007, 21, A938.	0.2	0
165	Diminished contractionâ€induced intracellular signaling in aged fastâ€twitch skeletal muscle with low and high mitochondrial content. FASEB Journal, 2007, 21, A1206.	0.2	0
166	Effects of prior chronic contractile activity on subsequent denervationâ€induced apoptosis in skeletal muscle. FASEB Journal, 2007, 21, A938.	0.2	0
167	Tom40 import and TOM complex assembly kinetics in subsarcolemmal and intermyofibrillar mitochondria. FASEB Journal, 2007, 21, A1302.	0.2	0
168	Differential expression of genes controlling mitochondrial biogenesis during C2C12 differentiation. FASEB Journal, 2007, 21, A662.	0.2	0
169	Mitochondrial protein import and assembly dynamics in response to chronic contractile activity in skeletal muscle of young and aged animals. FASEB Journal, 2008, 22, 1163.17.	0.2	0
170	Plasticity of aged skeletal muscle: chronic contractile activityâ€induced adaptations in muscle and mitochondrial function. FASEB Journal, 2008, 22, 754.9.	0.2	0
171	Apoptotic susceptibility, muscle and mitochondrial perturbations in skeletal muscle of p53 wildâ€ŧype (WT) and knockout (KO) mice. FASEB Journal, 2008, 22, 754.10.	0.2	0
172	Evaluation of whole muscle apoptotic susceptibility in young and old animals. FASEB Journal, 2008, 22, 1163.16.	0.2	0
173	Quantification of dynamic mitochondrial morphologies in myoblasts. FASEB Journal, 2010, 24, 989.21.	0.2	0
174	Muscleâ€Specific Disruption of Sirt1 Reduces Mitochondrial Function and Increases Reactive Oxygen Species Production. FASEB Journal, 2010, 24, 987.6.	0.2	0
175	Voluntary aerobic exercise attenuates oxidative stressâ€induced apoptotic signalling in cardiac muscle. FASEB Journal, 2010, 24, 806.8.	0.2	0
176	Skeletal muscle apoptosis following 7 days of denervationâ€induced muscle disuse. FASEB Journal, 2010, 24, 1044.4.	0.2	0
177	The effects of contractile activity on mitochondrial adaptations in PGCâ€l alphaâ€deficient muscle cells. FASEB Journal, 2010, 24, .	0.2	0
178	Regulation of p53 mRNA by AMP Kinase (AMPK) activation in C2C12 myoblasts. FASEB Journal, 2010, 24, 989.13.	0.2	0
179	Regulation of Tfam mRNA stability in skeletal muscle fiber types. FASEB Journal, 2010, 24, 989.14.	0.2	0
180	Autophagy signaling following denervationâ€induced muscle disuse in young and old animals. FASEB Journal, 2011, 25, 1106.5.	0.2	0

#	Article	IF	CITATIONS
181	Mitochondrial protein import in muscle of p53 wildtype (WT) and knockout (KO) mice. FASEB Journal, 2011, 25, 1104.3.	0.2	0
182	Alterations in mitochondrial fission and fusion proteins with chronic muscle use and disuse. FASEB Journal, 2011, 25, 1106.3.	0.2	0
183	Importance of fiber type and contractile activity to autophagic protein expression in cardiac and skeletal muscle. FASEB Journal, 2011, 25, 1107.5.	0.2	Ο
184	Mitochondrial biogenesis elicited by chronic contractile activity with mTORC1 inhibition. FASEB Journal, 2011, 25, 1059.13.	0.2	0
185	Influence of contractile activityâ€induced intracellular signaling on PGCâ€1α activity in muscle cells. FASEB Journal, 2011, 25, 1105.22.	0.2	0
186	Regulation of Tfam expression at the onset of muscle disuse. FASEB Journal, 2013, 27, 940.4.	0.2	0
187	Expression of sestrins in skeletal muscle with acute exercise and aging. FASEB Journal, 2013, 27, 939.8.	0.2	Ο
188	The regulation of mitochondrial movement within muscle cells. FASEB Journal, 2013, 27, 1202.3.	0.2	0
189	Mitochondrial integrity is impaired in MELAS patients (LB164). FASEB Journal, 2014, 28, LB164.	0.2	Ο
190	Parkin and its Role in Skeletal Muscle Function. FASEB Journal, 2015, 29, 821.3.	0.2	0
191	Mitochondrial Quality Control Regulation by p53 During Disuseâ€Induced Atrophy. FASEB Journal, 2019, 33, 537.3.	0.2	Ο
192	The Effect of Chronic Contractile Activity and Retinoic Acid on Mitochondrial Turnover in C2C12 Myotubes. FASEB Journal, 2019, 33, 537.7.	0.2	0
193	Hindlimb Denervation Alters the Regulation of Autophagy and Mitophagy. FASEB Journal, 2019, 33, 700.14.	0.2	0
194	Lysosomal Alterations in Skeletal Muscle Plasticity – An Investigation of Age, Exercise and Disuse. FASEB Journal, 2020, 34, 1-1.	0.2	0
195	Enhanced Mitochondrial Turnover in Aged Human Right Atrial Tissue. FASEB Journal, 2020, 34, 1-1.	0.2	0
196	Measurement of Protein Import Capacity of Skeletal Muscle Mitochondria. Journal of Visualized Experiments, 2022, , .	0.2	0
197	The importance of TP53/p53 in regulating the mitophagy-lysosomal machinery in muscle following disuse. , 2022, 1, 75-78.		0
198	The Role of ATF5 in Mitochondrial Maintenance, Biogenesis and UPR ^{mt} Signaling Following Acute Exercise in Skeletal Muscle. FASEB Journal, 2022, 36, .	0.2	0

#	Article	IF	CITATIONS
199	Role of TFE3 in Mitochondrial Adaptations to Skeletal Muscle Disuse. FASEB Journal, 2022, 36, .	0.2	0
200	Exercise mimicry: Characterization of nutraceutical agents that may contribute to mitochondrial homeostasis in skeletal muscle. FASEB Journal, 2022, 36, .	0.2	0
201	A Reduction in Tafazzin Decreases Mitochondrial Function in C2C12 Myotubes. FASEB Journal, 2022, 36,	0.2	0
202	Determining the role of ATF4 in the regulation of mitochondrial remodeling during myotube differentiation and contractile activity. FASEB Journal, 2022, 36, .	0.2	0