Darren Plett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965813/publications.pdf Version: 2024-02-01

NADDENI DI ETT

#	Article	IF	CITATIONS
1	Sensor-based phenotyping of above-ground plant-pathogen interactions. Plant Methods, 2022, 18, 35.	1.9	14
2	The phosphoproteome of rice leaves responds to water and nitrogen supply. Molecular Omics, 2021, 17, 706-718.	1.4	5
3	Continuous monitoring of plant sodium transport dynamics using clinical PET. Plant Methods, 2021, 17, 8.	1.9	11
4	Protonâ€pumping pyrophosphatase homeolog expression is a dynamic trait in bread wheat (<scp><i>Triticum aestivum</i></scp>). Plant Direct, 2021, 5, e354.	0.8	1
5	The Promise of Hyperspectral Imaging for the Early Detection of Crown Rot in Wheat. AgriEngineering, 2021, 3, 924-941.	1.7	8
6	Energy costs of salt tolerance in crop plants. New Phytologist, 2020, 225, 1072-1090.	3.5	284
7	The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. Journal of Experimental Botany, 2020, 71, 4452-4468.	2.4	119
8	Improved Yield and Photosynthate Partitioning in AVP1 Expressing Wheat (Triticum aestivum) Plants. Frontiers in Plant Science, 2020, 11, 273.	1.7	18
9	Plasma-membrane electrical responses to salt and osmotic gradients contradict radiotracer kinetics, and reveal Na+-transport dynamics in rice (Oryza sativa L.). Planta, 2019, 249, 1037-1051.	1.6	10
10	Nitrate uptake and its regulation in relation to improving nitrogen use efficiency in cereals. Seminars in Cell and Developmental Biology, 2018, 74, 97-104.	2.3	43
11	Structural variations in wheat HKT1;5 underpin differences in Na+ transport capacity. Cellular and Molecular Life Sciences, 2018, 75, 1133-1144.	2.4	45
12	Tackling Nitrogen Use Efficiency in Cereal Crops Using High-Throughput Phenotyping. , 2018, , 121-139.		5
13	Genomic and Genetic Studies of Abiotic Stress Tolerance in Barley. Compendium of Plant Genomes, 2018, , 259-286.	0.3	8
14	Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: translating knowledge from other crops. Functional Plant Biology, 2018, 45, 587.	1.1	31
15	Transition from a maternal to external nitrogen source in maize seedlings. Journal of Integrative Plant Biology, 2017, 59, 261-274.	4.1	11
16	AVP1: One Protein, Many Roles. Trends in Plant Science, 2017, 22, 154-162.	4.3	78
17	Molecular genetics to discover and improve nitrogen use efficiency in crop plants. , 2017, , 93-122.		11
18	Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms. Plant Molecular Biology, 2016, 92, 293-312.	2.0	16

DARREN PLETT

#	Article	IF	CITATIONS
19	Small amounts of ammonium (NH\$ _4^+ \$) can increase growth of maize (<i>Zea mays</i>). Journal of Plant Nutrition and Soil Science, 2016, 179, 717-725.	1.1	26
20	Maize maintains growth in response to decreased nitrate supply through a highly dynamic and developmental stageâ€specific transcriptional response. Plant Biotechnology Journal, 2016, 14, 342-353.	4.1	25
21	Variation for N Uptake System in Maize: Genotypic Response to N Supply. Frontiers in Plant Science, 2015, 6, 936.	1.7	39
22	Expressing AtNHX1 in barley (Hordium vulgare L.) does not improve plant performance under saline conditions. Plant Growth Regulation, 2015, 77, 289-297.	1.8	22
23	Genetic approaches to enhancing nitrogen-use efficiency (NUE) in cereals: challenges and future directions. Functional Plant Biology, 2015, 42, 921.	1.1	75
24	Expression of the <i><scp>A</scp>rabidopsis</i> vacuolar <scp>H</scp> ⁺ â€pyrophosphatase gene (<i><scp>AVP</scp>1</i>) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnology Journal, 2014, 12, 378-386.	4.1	147
25	The Na ⁺ transporter, Ta <scp>HKT</scp> 1;5â€D, limits shoot Na ⁺ accumulation in bread wheat. Plant Journal, 2014, 80, 516-526.	2.8	170
26	The response of the maize nitrate transport system to nitrogen demand and supply across the lifecycle. New Phytologist, 2013, 198, 82-94.	3.5	108
27	Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nature Biotechnology, 2012, 30, 360-364.	9.4	690
28	A Two-Staged Model of Na+ Exclusion in Rice Explained by 3D Modeling of HKT Transporters and Alternative Splicing. PLoS ONE, 2012, 7, e39865.	1.1	193
29	Root-Specific Transcript Profiling of Contrasting Rice Genotypes in Response to Salinity Stress. Molecular Plant, 2011, 4, 25-41.	3.9	115
30	Na ⁺ transport in glycophytic plants: what we know and would like to know. Plant, Cell and Environment, 2010, 33, 612-626.	2.8	197
31	Cell type-specific expression of sodium transporters improves salinity tolerance of rice. GM Crops, 2010, 1, 273-275.	1.8	7
32	Improved Salinity Tolerance of Rice Through Cell Type-Specific Expression of AtHKT1;1. PLoS ONE, 2010, 5, e12571.	1.1	140
33	Dichotomy in the NRT Gene Families of Dicots and Grass Species. PLoS ONE, 2010, 5, e15289.	1.1	143