Qiulong Wei

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6965790/qiulong-wei-publications-by-year.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

110 8,984 53 94 g-index

114 10,647 13.3 6.36 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
110	Mo C Nanoparticles Embedded in Carbon Nanowires with Surface Pseudocapacitance Enables High-Energy and High-Power Sodium Ion Capacitors <i>Small</i> , 2022 , e2200805	11	1
109	An Ultrahigh-Power Mesocarbon Microbeads Na -diglyme Na V (PO) Sodium-Ion Battery. <i>Advanced Materials</i> , 2021 , e2108304	24	10
108	Amorphous VO : A Pseudocapacitive Platform for High-Rate Symmetric Batteries. <i>Advanced Materials</i> , 2021 , 33, e2103736	24	8
107	Siloxane-Modified, Silica-Based Ionogel as a Pseudosolid Electrolyte for Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2021 , 4, 154-163	6.1	3
106	Pseudocapacitive Anode Materials toward High-Power Sodium-Ion Capacitors. <i>Batteries and Supercaps</i> , 2021 , 4, 1567	5.6	12
105	Manipulating the Local Electronic Structure in Li-Rich Layered Cathode Towards Superior Electrochemical Performance. <i>Advanced Functional Materials</i> , 2021 , 31, 2100783	15.6	16
104	Carbon decorated Li3V2(PO4)3 for high-rate lithium-ion batteries: Electrochemical performance and charge compensation mechanism. <i>Journal of Energy Chemistry</i> , 2021 , 53, 124-131	12	16
103	Surface pseudocapacitance of mesoporous Mo3N2 nanowire anode toward reversible high-rate sodium-ion storage. <i>Journal of Energy Chemistry</i> , 2021 , 55, 295-303	12	12
102	Revealing the Origin of Highly Efficient Polysulfide Anchoring and Transformation on Anion-Substituted Vanadium Nitride Host. <i>Advanced Functional Materials</i> , 2021 , 31, 2008034	15.6	19
101	Precisely Designed Mesoscopic Titania for High-Volumetric-Density Pseudocapacitance. <i>Journal of the American Chemical Society</i> , 2021 , 143, 14097-14105	16.4	2
100	High-Energy and High-Power Pseudocapacitor-Battery Hybrid Sodium-Ion Capacitor with Na Intercalation Pseudocapacitance Anode. <i>Nano-Micro Letters</i> , 2021 , 13, 55	19.5	19
99	Multielectron Redox and Insulator-to-Metal Transition upon Lithium Insertion in the Fast-Charging, Wadsley-Roth Phase PNb9O25. <i>Chemistry of Materials</i> , 2020 , 32, 4553-4563	9.6	23
98	Stable Ti3+ Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. <i>Angewandte Chemie</i> , 2020 , 132, 17829-17836	3.6	8
97	Stable Ti Defects in Oriented Mesoporous Titania Frameworks for Efficient Photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 17676-17683	16.4	38
96	Reducing polarization of lithium-sulfur batteries via ZnS/reduced graphene oxide accelerated lithium polysulfide conversion. <i>Materials Today Energy</i> , 2020 , 18, 100519	7	25
95	Dihexyl-Substituted Poly(3,4-Propylenedioxythiophene) as a Dual Ionic and Electronic Conductive Cathode Binder for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2020 , 32, 9176-9189	9.6	16
94	Pseudocapacitive Vanadium-based Materials toward High-Rate Sodium-Ion Storage. <i>Energy and Environmental Materials</i> , 2020 , 3, 221-234	13	43

(2018-2020)

93	Activated carbon clothes for wide-voltage high-energy-density aqueous symmetric supercapacitors. <i>Chinese Chemical Letters</i> , 2020 , 31, 1620-1624	8.1	16
92	Achieving high energy density and high power density with pseudocapacitive materials. <i>Nature Reviews Materials</i> , 2020 , 5, 5-19	73.3	542
91	Intercalation pseudocapacitance of FeVO4hH2O nanowires anode for high-energy and high-power sodium-ion capacitor. <i>Nano Energy</i> , 2020 , 73, 104838	17.1	23
90	Two-Dimensional Mesoporous Heterostructure Delivering Superior Pseudocapacitive Sodium Storage via Bottom-Up Monomicelle Assembly. <i>Journal of the American Chemical Society</i> , 2019 , 141, 16	57 5 5 :1 6	782
89	Surface Pseudocapacitive Mechanism of Molybdenum Phosphide for High-Energy and High-Power Sodium-Ion Capacitors. <i>Advanced Energy Materials</i> , 2019 , 9, 1900967	21.8	37
88	Strongly Coupled Pyridine-V O IhH O Nanowires with Intercalation Pseudocapacitance and Stabilized Layer for High Energy Sodium Ion Capacitors. <i>Small</i> , 2019 , 15, e1900379	11	26
87	Vanadium Oxide Pillared by Interlayer Mg2+ Ions and Water as Ultralong-Life Cathodes for Magnesium-Ion Batteries. <i>CheM</i> , 2019 , 5, 1194-1209	16.2	100
86	Uncovering the Cu-driven electrochemical mechanism of transition metal chalcogenides based electrodes. <i>Energy Storage Materials</i> , 2019 , 16, 625-631	19.4	38
85	Polyol Solvation Effect on Tuning the Universal Growth of Binary Metal Oxide Nanodots@Graphene Oxide Heterostructures for Electrochemical Applications. <i>Chemistry - A European Journal</i> , 2019 , 25, 14604-14612	4.8	2
84	Prussian White Hierarchical Nanotubes with Surface-Controlled Charge Storage for Sodium-Ion Batteries. <i>Advanced Functional Materials</i> , 2019 , 29, 1806405	15.6	75
83	Pseudocapacitive Graphene-Wrapped Porous VO2 Microspheres for Ultrastable and Ultrahigh-Rate Sodium-Ion Storage. <i>ChemElectroChem</i> , 2019 , 6, 1400-1406	4.3	2
82	Ultrastable and High-Performance Zn/VO2 Battery Based on a Reversible Single-Phase Reaction. <i>Chemistry of Materials</i> , 2019 , 31, 699-706	9.6	139
81	Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for Mg-Na hybrid-ion batteries. <i>Nano Energy</i> , 2019 , 55, 526-533	17.1	24
80	Multidimensional Synergistic Nanoarchitecture Exhibiting Highly Stable and Ultrafast Sodium-Ion Storage. <i>Advanced Materials</i> , 2018 , 30, e1707122	24	94
79	Pseudocapacitive layered iron vanadate nanosheets cathode for ultrahigh-rate lithium ion storage. <i>Nano Energy</i> , 2018 , 47, 294-300	17.1	70
78	Novel layered iron vanadate cathode for high-capacity aqueous rechargeable zinc batteries. <i>Chemical Communications</i> , 2018 , 54, 4041-4044	5.8	127
77	Sodium Vanadium Fluorophosphates (NVOPF) Array Cathode Designed for High-Rate Full Sodium Ion Storage Device. <i>Advanced Energy Materials</i> , 2018 , 8, 1800058	21.8	124
76	Sodium Ion Capacitor Using Pseudocapacitive Layered Ferric Vanadate Nanosheets Cathode. <i>IScience</i> , 2018 , 6, 212-221	6.1	53

75	Ultrathin Surface Coating Enables Stabilized Zinc Metal Anode. <i>Advanced Materials Interfaces</i> , 2018 , 5, 1800848	4.6	276
74	New anatase phase VTi2.6O7.2 ultrafine nanocrystals for high-performance rechargeable magnesium-based batteries. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13901-13907	13	16
73	Water-Lubricated Intercalation in V O IhH O for High-Capacity and High-Rate Aqueous Rechargeable Zinc Batteries. <i>Advanced Materials</i> , 2018 , 30, 1703725	24	725
72	Understanding the electrochemical reaction mechanism of VS2 nanosheets in lithium-ion cells by multiple in situ and ex situ x-ray spectroscopy. <i>Journal Physics D: Applied Physics</i> , 2018 , 51, 494001	3	10
71	Pseudocapacitive layered birnessite sodium manganese dioxide for high-rate non-aqueous sodium ion capacitors. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12259-12266	13	24
70	Conversion reaction of vanadium sulfide electrode in the lithium-ion cell: Reversible or not reversible?. <i>Nano Energy</i> , 2018 , 51, 391-399	17.1	42
69	Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage. <i>Advanced Materials</i> , 2017 , 29, 1602300	24	435
68	Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors. <i>Nature Communications</i> , 2017 , 8, 14264	17.4	452
67	Methyl-functionalized MoS nanosheets with reduced lattice breathing for enhanced pseudocapacitive sodium storage. <i>Physical Chemistry Chemical Physics</i> , 2017 , 19, 13696-13702	3.6	50
66	Pseudocapacitive titanium oxynitride mesoporous nanowires with iso-oriented nanocrystals for ultrahigh-rate sodium ion hybrid capacitors. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10827-10835	13	73
65	Thermal Induced Strain Relaxation of 1D Iron Oxide for Solid Electrolyte Interphase Control and Lithium Storage Improvement. <i>Advanced Energy Materials</i> , 2017 , 7, 1601582	21.8	70
64	Energy Storage: Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage (Adv. Mater. 20/2017). <i>Advanced Materials</i> , 2017 , 29,	24	4
63	Robust LiTi2(PO4)3 microflowers as high-rate and long-life cathodes for Mg-based hybrid-ion batteries. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 13950-13956	13	24
62	Facile synthesis of MoO 2 @C nanoflowers as anode materials for sodium-ion batteries. <i>Materials Research Bulletin</i> , 2017 , 94, 122-126	5.1	16
61	Novel layer-by-layer stacked VS2 nanosheets with intercalation pseudocapacitance for high-rate sodium ion charge storage. <i>Nano Energy</i> , 2017 , 35, 396-404	17.1	239
60	Three-dimensional graphene frameworks wrapped Li3V2(PO4)3 with reversible topotactic sodium-ion storage. <i>Nano Energy</i> , 2017 , 32, 347-352	17.1	44
59	NiSe Nanooctahedra as an Anode Material for High-Rate and Long-Life Sodium-Ion Battery. <i>ACS Applied Materials & Applied & App</i>	9.5	182
58	Mesoporous NiS Nanospheres Anode with Pseudocapacitance for High-Rate and Long-Life Sodium-Ion Battery. <i>Small</i> , 2017 , 13, 1701744	11	121

(2016-2017)

57	In Operando Probing of Sodium-Incorporation in NASICON Nanomaterial: Asymmetric Reaction and Electrochemical Phase Diagram. <i>Chemistry of Materials</i> , 2017 , 29, 8057-8064	9.6	17
56	Self-adaptive mesoporous CoS@alveolus-like carbon yolk-shell microsphere for alkali cations storage. <i>Nano Energy</i> , 2017 , 41, 109-116	17.1	64
55	Nanoribbons and nanoscrolls intertwined three-dimensional vanadium oxide hydrogels for high-rate lithium storage at high mass loading level. <i>Nano Energy</i> , 2017 , 40, 73-81	17.1	37
54	Greigite FeS as a new anode material for high-performance sodium-ion batteries. <i>Chemical Science</i> , 2017 , 8, 160-164	9.4	99
53	A Crystalline/Amorphous Cobalt(II,III) Oxide Hybrid Electrocatalyst for LithiumAir Batteries. <i>Energy Technology</i> , 2017 , 5, 568-579	3.5	11
52	Cathodic polarization suppressed sodium-ion full cell with a 3.3 V high-voltage. <i>Nano Energy</i> , 2016 , 28, 216-223	17.1	76
51	Flexible additive free H2V3O8 nanowire membrane as cathode for sodium ion batteries. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 12074-9	3.6	60
50	Novel layered Li3V2(PO4)3/rGO&C sheets as high-rate and long-life lithium ion battery cathodes. <i>Chemical Communications</i> , 2016 , 52, 8730-2	5.8	24
49	Graphene Oxide Templated Growth and Superior Lithium Storage Performance of Novel Hierarchical Co2V2O7 Nanosheets. <i>ACS Applied Materials & District Action States (Novel Materials & District Materia</i>	9.5	61
48	Single-Nanowire Electrochemical Probe Detection for Internally Optimized Mechanism of Porous Graphene in Electrochemical Devices. <i>Nano Letters</i> , 2016 , 16, 1523-9	11.5	59
47	Vertically stacked holey graphene/polyaniline heterostructures with enhanced energy storage for on-chip micro-supercapacitors. <i>Nano Research</i> , 2016 , 9, 1012-1021	10	32
46	Facile synthesis of a Co3V2O8 interconnected hollow microsphere anode with superior high-rate capability for Li-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 5075-5080	13	57
45	3D self-supported nanopine forest-like Co3O4@CoMoO4 coreBhell architectures for high-energy solid state supercapacitors. <i>Nano Energy</i> , 2016 , 19, 222-233	17.1	262
44	Layer-by-Layer Na3V2(PO4)3 Embedded in Reduced Graphene Oxide as Superior Rate and Ultralong-Life Sodium-Ion Battery Cathode. <i>Advanced Energy Materials</i> , 2016 , 6, 1600389	21.8	225
43	Improved conductivity and capacitance of interdigital carbon microelectrodes through integration with carbon nanotubes for micro-supercapacitors. <i>Nano Research</i> , 2016 , 9, 2510-2519	10	62
42	A High-Rate V2 O5 Hollow Microclew Cathode for an All-Vanadium-Based Lithium-Ion Full Cell. <i>Small</i> , 2016 , 12, 1082-90	11	44
41	In operando observation of temperature-dependent phase evolution in lithium-incorporation olivine cathode. <i>Nano Energy</i> , 2016 , 22, 406-413	17.1	24
40	Low-temperature solution-processed p-type vanadium oxide for perovskite solar cells. <i>Chemical Communications</i> , 2016 , 52, 8099-102	5.8	55

39	Hollow spherical LiNi0.5Mn1.5O4 built from polyhedra with high-rate performance via carbon nanotube modification. <i>Science China Materials</i> , 2016 , 59, 95-103	7.1	27
38	Graphene wrapped NASICON-type Fe2(MoO4)3 nanoparticles as a ultra-high rate cathode for sodium ion batteries. <i>Nano Energy</i> , 2016 , 24, 130-138	17.1	49
37	Self-sacrificed synthesis of three-dimensional Na3V2(PO4)3 nanofiber network for high-rate sodiumibn full batteries. <i>Nano Energy</i> , 2016 , 25, 145-153	17.1	186
36	Cycling-Stable Cathodes: The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions (Adv. Funct. Mater. 36/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 6498-6498	15.6	
35	The Capturing of Ionized Oxygen in Sodium Vanadium Oxide Nanorods Cathodes under Operando Conditions. <i>Advanced Functional Materials</i> , 2016 , 26, 6555-6562	15.6	15
34	Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. <i>Nano Energy</i> , 2016 , 28, 224-231	17.1	114
33	Hierarchical zigzag Na1.25V3O8 nanowires with topotactically encoded superior performance for sodium-ion battery cathodes. <i>Energy and Environmental Science</i> , 2015 , 8, 1267-1275	35.4	141
32	Three-Dimensional LiMnPO4ILi3V2(PO4)3/C Nanocomposite as a Bicontinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries. <i>ACS Applied Materials & Discountinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries</i> . <i>ACS Applied Materials & Discountinuous Cathode for High-Rate and Long-Life Lithium-Ion Batteries.</i>	4 ^{9.5}	18
31	Hydrated vanadium pentoxide with superior sodium storage capacity. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 8070-8075	13	146
30	Integrated SnO2 nanorod array with polypyrrole coverage for high-rate and long-life lithium batteries. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 7619-23	3.6	70
29	Interconnected NanorodsNanoflakes Li2Co2(MoO4)3 Framework Structure with Enhanced Electrochemical Properties for Supercapacitors. <i>Advanced Energy Materials</i> , 2015 , 5, 1500060	21.8	39
28	Mesoporous LiVO/C Submicron-Ellipsoids Supported on Reduced Graphene Oxide as Practical Anode for High-Power Lithium-Ion Batteries. <i>Advanced Science</i> , 2015 , 2, 1500284	13.6	81
27	Facile synthesis of reduced graphene oxide wrapped nickel silicate hierarchical hollow spheres for long-life lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 19427-19432	13	62
26	Lattice Breathing Inhibited Layered Vanadium Oxide Ultrathin Nanobelts for Enhanced Sodium Storage. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 18211-7	9.5	76
25	Self-template synthesis of hollow shell-controlled Li3VO4 as a high-performance anode for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 18839-18842	13	48
24	Vanadium Sulfide on Reduced Graphene Oxide Layer as a Promising Anode for Sodium Ion Battery. <i>ACS Applied Materials & Discrete Samp; Interfaces</i> , 2015 , 7, 20902-8	9.5	171
23	Copper Silicate Hydrate Hollow Spheres Constructed by Nanotubes Encapsulated in Reduced Graphene Oxide as Long-Life Lithium-Ion Battery Anode. <i>ACS Applied Materials & Discrete Amplied & Discrete Amplied</i>	9.5	71
22	Graphene Oxide Wrapped Amorphous Copper Vanadium Oxide with Enhanced Capacitive Behavior for High-Rate and Long-Life Lithium-Ion Battery Anodes. <i>Advanced Science</i> , 2015 , 2, 1500154	13.6	100

21	In Situ Investigation of Li and Na Ion Transport with Single Nanowire Electrochemical Devices. <i>Nano Letters</i> , 2015 , 15, 3879-84	11.5	49
20	Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. <i>Nano Research</i> , 2015 , 8, 481-490	10	67
19	Nanoflake-Assembled Hierarchical Na3V2(PO4)3/C Microflowers: Superior Li Storage Performance and Insertion/Extraction Mechanism. <i>Advanced Energy Materials</i> , 2015 , 5, 1401963	21.8	144
18	Three-Dimensional Interconnected Vanadium Pentoxide Nanonetwork Cathode for High-Rate Long-Life Lithium Batteries. <i>Small</i> , 2015 , 11, 2654-60	11	52
17	Novel Polygonal Vanadium Oxide Nanoscrolls as Stable Cathode for Lithium Storage. <i>Advanced Functional Materials</i> , 2015 , 25, 1773-1779	15.6	49
16	Top-down fabrication of three-dimensional porous V2O5 hierarchical microplates with tunable porosity for improved lithium battery performance. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3297-3302	2 ¹³	72
15	Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. <i>Journal of Power Sources</i> , 2014 , 255, 235-241	8.9	67
14	Amorphous vanadium oxide matrixes supporting hierarchical porous Fe3O4/graphene nanowires as a high-rate lithium storage anode. <i>Nano Letters</i> , 2014 , 14, 6250-6	11.5	224
13	Electrochemical Nanowire Devices for Energy Storage. <i>IEEE Nanotechnology Magazine</i> , 2014 , 13, 10-15	2.6	7
12	A unique hollow Li3VO4/carbon nanotube composite anode for high rate long-life lithium-ion batteries. <i>Nanoscale</i> , 2014 , 6, 11072-7	7.7	77
11	Ultralong H2V3O8 nanowire bundles as a promising cathode for lithium batteries. <i>New Journal of Chemistry</i> , 2014 , 38, 2075-2080	3.6	31
10	One-Pot synthesized bicontinuous hierarchical Li3V2(PO4)3/C mesoporous nanowires for high-rate and ultralong-life lithium-ion batteries. <i>Nano Letters</i> , 2014 , 14, 1042-8	11.5	216
9	A Bowknot-like RuO2 quantum dots@V2O5 cathode with largely improved electrochemical performance. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 18680-5	3.6	16
8	Hierarchical Carbon Decorated Li3V2(PO4)3 as a Bicontinuous Cathode with High-Rate Capability and Broad Temperature Adaptability. <i>Advanced Energy Materials</i> , 2014 , 4, 1400107	21.8	65
7	Nanowire Electrodes for Advanced Lithium Batteries. Frontiers in Energy Research, 2014, 2,	3.8	16
6	Metastable amorphous chromium-vanadium oxide nanoparticles with superior performance as a new lithium battery cathode. <i>Nano Research</i> , 2014 , 7, 1604-1612	10	16
5	Electrodes: Hierarchical Carbon Decorated Li3V2(PO4)3 as a Bicontinuous Cathode with High-Rate Capability and Broad Temperature Adaptability (Adv. Energy Mater. 16/2014). <i>Advanced Energy Materials</i> , 2014 , 4,	21.8	3
4	Nanoflakes-assembled three-dimensional hollow-porous v2 o5 as lithium storage cathodes with high-rate capacity. <i>Small</i> , 2014 , 10, 3032-7	11	84

3	Nanoscroll buffered hybrid nanostructural VO2 (B) cathodes for high-rate and long-life lithium storage. <i>Advanced Materials</i> , 2013 , 25, 2969-73	24	186
2	Supercritically exfoliated ultrathin vanadium pentoxide nanosheets with high rate capability for lithium batteries. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 16828-33	3.6	63
1	Synergistic effect of hierarchical nanostructured MoO2/Co(OH)2 with largely enhanced pseudocapacitor cyclability. <i>Nano Letters</i> , 2013 , 13, 5685-91	11.5	171