Heiner J Gores

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965770/publications.pdf

Version: 2024-02-01

516710 1,115 23 16 h-index citations papers

g-index 24 1522 citing authors

642732

23

24 all docs

24 docs citations

times ranked

#	Article	IF	Citations
1	Electroplating Dysprosium from IL-Based Solutions: A Promising Electrochemical Step to Produce Stronger High Performance Nd(Dy)-Fe-B Sintered Magnets. Journal of the Electrochemical Society, 2015, 162, D382-D388.	2.9	17
2	Investigations on the electrochemical performance and thermal stability of two new lithium electrolyte salts in comparison to LiPF6. Electrochimica Acta, 2013, 114, 658-666.	5.2	30
3	Mechanism of Anodic Dissolution of the Aluminum Current Collector in 1 M LiTFSI EC:DEC 3:7 in Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 2013, 160, A356-A360.	2.9	143
4	Results from a Novel Method for Corrosion Studies of Electroplated Lithium Metal Based on Measurements with an Impedance Scanning Electrochemical Quartz Crystal Microbalance. Energies, 2013, 6, 3481-3505.	3.1	8
5	A Liquid Inorganic Electrolyte Showing an Unusually High Lithium Ion Transference Number: A Concentrated Solution of LiAlCl4 in Sulfur Dioxide. Energies, 2013, 6, 4448-4464.	3.1	14
6	Electrochemical and Thermal Investigations and Al Current Collector Dissolution Studies of Three Di-Lithium Salts in Comparison to LiPF ₆ Containing Electrolytes. Journal of the Electrochemical Society, 2013, 160, A535-A541.	2.9	15
7	Salt-In-Polymer Electrolytes Based on Polysiloxanes for Lithium-Ion Cells: Ionic Transport and Electrochemical Stability. ECS Transactions, 2011, 33, 3-15.	0.5	11
8	Fast Micro-Kelvin Resolution Thermometer Based on NTC Thermistors. Journal of Chemical & Engineering Data, 2011, 56, 4823-4828.	1.9	6
9	Salt Diffusion Coefficients, Concentration Dependence of Cell Potentials, and Transference Numbers of Lithium Difluoromono(oxalato)borate-Based Solutions. Journal of Chemical & Engineering Data, 2011, 56, 4786-4789.	1.9	31
10	Measurement of adsorption kinetics of benzotriazole on copper surfaces via impedance scanning quartz crystal microbalance studies. Electrochemistry Communications, 2011, 13, 803-805.	4.7	6
11	(Invited) Lithium Borates for Lithium-Ion Battery Electrolytes. ECS Transactions, 2010, 25, 13-17.	0.5	12
12	Electrochemical measurement of triiodide diffusion coefficients in blends of ionic liquids. Journal of Molecular Liquids, 2010, 156, 52-57.	4.9	17
13	Fractional Walden Rule for Ionic Liquids: Examples from Recent Measurements and a Critique of the So-Called Ideal KCl Line for the Walden Plot. Journal of Chemical & Engineering Data, 2010, 55, 1784-1788.	1.9	394
14	Temperature Dependence of Viscosity and Specific Conductivity of Fluoroborate-Based Ionic Liquids in Light of the Fractional Walden Rule and Angell's Fragility Concept. Journal of Chemical & Engineering Data, 2010, 55, 4372-4377.	1.9	85
15	Effect of Ionic Liquids as Additives on Lithium Electrolytes: Conductivity, Electrochemical Stability, and Aluminum Corrosion. Journal of Chemical & Engineering Data, 2010, 55, 1794-1798.	1.9	47
16	Chlorideâ€Free Method to Synthesise New Ionic Liquids with Mixed Borate Anions. Chemistry - A European Journal, 2009, 15, 2270-2272.	3.3	29
17	Investigation of the Hydrolysis of Lithium Bis[1,2-oxalato(2-)- <i>O</i> , <i>O</i> ,′] Borate (LiBOB) in Water and Acetonitrile by Conductivity and NMR Measurements in Comparison to Some Other Borates. Journal of Chemical & Data, 2009, 54, 468-471.	1.9	28
18	Temperature Dependence of the Non-Stokesian Charge Transport in Binary Blends of Ionic Liquids. Journal of Chemical & Data, 2009, 54, 491-497.	1.9	30

HEINER J GORES

#	Article	IF	CITATIONS
19	Efficient determination of crystallisation and melting points at low cooling and heating rates with novel computer controlled equipment. Journal of Chemical Thermodynamics, 2008, 40, 1542-1547.	2.0	26
20	A microelectrode study of triiodide diffusion coefficients in mixtures of room temperature ionic liquids, useful for dye-sensitised solar cells. Mikrochimica Acta, 2008, 160, 125-133.	5.0	37
21	Overcoming Kinetic Limitations of Electron Injection in the Dye Solar Cell via Coadsorption and FRET. ChemPhysChem, 2008, 9, 793-798.	2.1	49
22	Characterisation of DSSC-electrolytes based on 1-ethyl-3-methylimidazolium dicyanamide: Measurement of triiodide diffusion coefficient, viscosity, and photovoltaic performance. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 197, 25-33.	3.9	56
23	Temperature and Concentration Dependence of Conductivities of Some New Semichelatoborates in Acetonitrile and Comparison with Other Borates. Journal of Chemical & Department of Chemical & Departme	1.9	24