
Zengxin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965697/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Observed changes of drought/wetness episodes in the Pearl River basin, China, using the standardized precipitation index and aridity index. Theoretical and Applied Climatology, 2009, 98, 89-99.	1.3	211
2	Similarity and difference of the two successive V6 and V7 TRMM multisatellite precipitation analysis performance over China. Journal of Geophysical Research D: Atmospheres, 2013, 118, 13,060.	1.2	177
3	Examining the influence of river–lake interaction on the drought and water resources in the Poyang Lake basin. Journal of Hydrology, 2015, 522, 510-521.	2.3	158
4	Estimation of future precipitation change in the Yangtze River basin by using statistical downscaling method. Stochastic Environmental Research and Risk Assessment, 2011, 25, 781-792.	1.9	149
5	The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30 years. Science of the Total Environment, 2018, 635, 443-451.	3.9	119
6	Streamflow Trends and Climate Variability Impacts in Poyang Lake Basin, China. Water Resources Management, 2010, 24, 689-706.	1.9	99
7	Statistical behaviours of precipitation regimes in China and their links with atmospheric circulation 1960–2005. International Journal of Climatology, 2011, 31, 1665-1678.	1.5	98
8	Evaluation of Version-7 TRMM Multi-Satellite Precipitation Analysis Product during the Beijing Extreme Heavy Rainfall Event of 21 July 2012. Water (Switzerland), 2014, 6, 32-44.	1.2	79
9	Changes of temperature extremes for 1960–2004 in Far-West China. Stochastic Environmental Research and Risk Assessment, 2009, 23, 721-735.	1.9	68
10	Projections of precipitation over China based on CMIP6 models. Stochastic Environmental Research and Risk Assessment, 2021, 35, 831-848.	1.9	62
11	Spatial and temporal variations in rainfall erosivity during 1960–2005 in the Yangtze River basin. Stochastic Environmental Research and Risk Assessment, 2013, 27, 337-351.	1.9	61
12	Spatial and temporal characteristics of changes in precipitation during 1957–2007 in the Haihe River basin, China. Stochastic Environmental Research and Risk Assessment, 2011, 25, 881-895.	1.9	56
13	Simulation of extreme precipitation indices in the Yangtze River basin by using statistical downscaling method (SDSM). Theoretical and Applied Climatology, 2012, 108, 325-343.	1.3	45
14	Precipitation extremes in a karst region: a case study in the Guizhou province, southwest China. Theoretical and Applied Climatology, 2010, 101, 53-65.	1.3	41
15	Changes in Forest Net Primary Productivity in the Yangtze River Basin and Its Relationship with Climate Change and Human Activities. Remote Sensing, 2019, 11, 1451.	1.8	38
16	Changes of atmospheric water vapor budget in the Pearl River basin and possible implications for hydrological cycle. Theoretical and Applied Climatology, 2010, 102, 185-195.	1.3	37
17	MaxEnt Modeling Based on CMIP6 Models to Project Potential Suitable Zones for Cunninghamia lanceolata in China. Forests, 2021, 12, 752.	0.9	34
18	Spatial and temporal variation of precipitation in Sudan and their possible causes during 1948–2005. Stochastic Environmental Research and Risk Assessment, 2012, 26, 429-441.	1.9	32

ZENGXIN ZHANG

#	Article	IF	CITATIONS
19	Increasing carbon storage in subtropical forests over the Yangtze River basin and its relations to the major ecological projects. Science of the Total Environment, 2020, 709, 136163.	3.9	32
20	Evaluation of the GPM IMERG v5 and TRMM 3B42 v7 Precipitation Products in the Yangtze River Basin, China. Water (Switzerland), 2019, 11, 1459.	1.2	30
21	Moisture budget variations in the Yangtze River Basin, China, and possible associations with large-scale circulation. Stochastic Environmental Research and Risk Assessment, 2010, 24, 579-589.	1.9	24
22	Atmospheric moisture budget and floods in the Yangtze River basin, China. Theoretical and Applied Climatology, 2009, 95, 331-340.	1.3	23
23	Validation of a new meteorological forcing data in analysis of spatial and temporal variability of precipitation in India. Stochastic Environmental Research and Risk Assessment, 2014, 28, 239-252.	1.9	23
24	Influence of Three Gorges Dam on Downstream Low Flow. Water (Switzerland), 2019, 11, 65.	1.2	23
25	Evaluating the TRMM Multisatellite Precipitation Analysis for Extreme Precipitation and Streamflow in Ganjiang River Basin, China. Advances in Meteorology, 2017, 2017, 1-11.	0.6	22
26	Accelerated soil CO ₂ efflux after conversion from secondary oak forest to pine plantation in southeastern China. Ecological Research, 2009, 24, 1257-1265.	0.7	21
27	Climatological Drought Analyses and Projection Using SPI and PDSI: Case Study of the Arkansas Red River Basin. Journal of Hydrologic Engineering - ASCE, 2013, 18, 809-816.	0.8	20
28	Changing features of extreme precipitation in the Yangtze River basin during 1961–2002. Journal of Chinese Geography, 2007, 17, 33-42.	1.5	18
29	Nonâ€stationary frequency analysis of extreme streamflow disturbance in a typical ecological function reserve of China under a changing climate. Ecohydrology, 2021, 14, e2323.	1.1	17
30	Statistical properties of moisture transport in East Asia and their impacts on wetness/dryness variations in North China. Theoretical and Applied Climatology, 2011, 104, 337-347.	1.3	16
31	Analysis of Poyang Lake water balance and its indication of river–lake interaction. SpringerPlus, 2016, 5, 1555.	1.2	16
32	Changes of Grassland Rain Use Efficiency and NDVI in Northwestern China from 1982 to 2013 and Its Response to Climate Change. Water (Switzerland), 2018, 10, 1689.	1.2	15
33	Population and Economic Projections in the Yangtze River Basin Based on Shared Socioeconomic Pathways. Sustainability, 2020, 12, 4202.	1.6	14
34	Will the arid and semi-arid regions of Northwest China become warmer and wetter based on CMIP6 models?. Hydrology Research, 2022, 53, 29-50.	1.1	14
35	Evaluation of TRMM Multisatellite Precipitation Analysis in the Yangtze River Basin with a Typical Monsoon Climate. Advances in Meteorology, 2016, 2016, 1-13.	0.6	13
36	Composition and Biomass of Aquatic Vegetation in the Poyang Lake, China. Scientifica, 2017, 2017, 1-10.	0.6	12

ZENGXIN ZHANG

#	Article	IF	CITATIONS
37	Statistical properties of the temperature, relative humidity, and net solar radiation in the Blue Nile-eastern Sudan region. Theoretical and Applied Climatology, 2010, 101, 397-409.	1.3	11
38	On the Linkage between the Extreme Drought and Pluvial Patterns in China and the Large-Scale Atmospheric Circulation. Advances in Meteorology, 2016, 2016, 1-12.	0.6	6
39	Hydrologic Evaluation of Integrated Multi-Satellite Retrievals for GPM over Nanliu River Basin in Tropical Humid Southern China. Water (Switzerland), 2019, 11, 932.	1.2	5
40	Changes in water use efficiency and their relations to climate change and human activities in three forestry regions of China. Theoretical and Applied Climatology, 2021, 144, 1297-1310.	1.3	5
41	Observed dryness and wetness variability in Shanghai during 1873–2005. Journal of Chinese Geography, 2009, 19, 143-152.	1.5	4
42	Encounter Probability and Risk of Flood and Drought under Future Climate Change in the Two Tributaries of the Rao River Basin, China. Water (Switzerland), 2020, 12, 104.	1.2	4
43	Observed climatic changes in Shanghai during 1873–2002. Journal of Chinese Geography, 2005, 15, 217-222.	1.5	2
44	Spatial and temporal analysis of land cover change and landscape pattern in Nanjing city during its rapid urbanization. , 2010, , .		0