List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965464/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | EEG-Based Spatio–Temporal Convolutional Neural Network for Driver Fatigue Evaluation. IEEE<br>Transactions on Neural Networks and Learning Systems, 2019, 30, 2755-2763.                    | 7.2 | 272       |
| 2  | Complex network analysis of time series. Europhysics Letters, 2016, 116, 50001.                                                                                                             | 0.7 | 230       |
| 3  | Multivariate weighted complex network analysis for characterizing nonlinear dynamic behavior in two-phase flow. Experimental Thermal and Fluid Science, 2015, 60, 157-164.                  | 1.5 | 172       |
| 4  | Complex network from time series based on phase space reconstruction. Chaos, 2009, 19, 033137.                                                                                              | 1.0 | 162       |
| 5  | Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks. Physical Review E, 2009, 79, 066303.                                                   | 0.8 | 154       |
| 6  | Visibility Graph from Adaptive Optimal Kernel Time-Frequency Representation for Classification of Epileptiform EEG. International Journal of Neural Systems, 2017, 27, 1750005.             | 3.2 | 147       |
| 7  | Multiscale limited penetrable horizontal visibility graph for analyzing nonlinear time series.<br>Scientific Reports, 2016, 6, 35622.                                                       | 1.6 | 135       |
| 8  | A directed weighted complex network for characterizing chaotic dynamics from time series.<br>Nonlinear Analysis: Real World Applications, 2012, 13, 947-952.                                | 0.9 | 130       |
| 9  | Multiscale complex network for analyzing experimental multivariate time series. Europhysics Letters, 2015, 109, 30005.                                                                      | 0.7 | 116       |
| 10 | Multi-frequency complex network from time series for uncovering oil-water flow structure.<br>Scientific Reports, 2015, 5, 8222.                                                             | 1.6 | 106       |
| 11 | A novel convolutional neural network framework based solar irradiance prediction method.<br>International Journal of Electrical Power and Energy Systems, 2020, 114, 105411.                | 3.3 | 102       |
| 12 | Flow pattern and water holdup measurements of vertical upward oil–water two-phase flow in small<br>diameter pipes. International Journal of Multiphase Flow, 2012, 41, 91-105.              | 1.6 | 93        |
| 13 | Complex networks and deep learning for EEG signal analysis. Cognitive Neurodynamics, 2021, 15, 369-388.                                                                                     | 2.3 | 89        |
| 14 | A Four-Sector Conductance Method for Measuring and Characterizing Low-Velocity Oil–Water<br>Two-Phase Flows. IEEE Transactions on Instrumentation and Measurement, 2016, 65, 1690-1697.     | 2.4 | 85        |
| 15 | Recurrence networks from multivariate signals for uncovering dynamic transitions of horizontal oil-water stratified flows. Europhysics Letters, 2013, 103, 50004.                           | 0.7 | 84        |
| 16 | A Channel-Fused Dense Convolutional Network for EEG-Based Emotion Recognition. IEEE Transactions on Cognitive and Developmental Systems, 2021, 13, 945-954.                                 | 2.6 | 81        |
| 17 | Motif distributions in phase-space networks for characterizing experimental two-phase flow patterns with chaotic features. Physical Review E, 2010, 82, 016210.                             | 0.8 | 75        |
| 18 | A Novel Multiplex Network-Based Sensor Information Fusion Model and Its Application to Industrial Multiphase Flow System. IEEE Transactions on Industrial Informatics, 2018, 14, 3982-3988. | 7.2 | 70        |

| #  | Article                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Spatial prisoner's dilemma games with increasing neighborhood size and individual diversity on two<br>interdependent lattices. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379,<br>767-773. | 0.9 | 68        |
| 20 | Characterizing slug to churn flow transition by using multivariate pseudo Wigner distribution and multivariate multiscale entropy. Chemical Engineering Journal, 2016, 291, 74-81.                                         | 6.6 | 65        |
| 21 | Nonlinear dynamic analysis of large diameter inclined oil–water two phase flow pattern.<br>International Journal of Multiphase Flow, 2010, 36, 166-183.                                                                    | 1.6 | 64        |
| 22 | Multivariate recurrence network analysis for characterizing horizontal oil-water two-phase flow.<br>Physical Review E, 2013, 88, 032910.                                                                                   | 0.8 | 60        |
| 23 | Wavelet Multiresolution Complex Network for Analyzing Multivariate Nonlinear Time Series.<br>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750123.                        | 0.7 | 59        |
| 24 | Relative Wavelet Entropy Complex Network for Improving EEG-Based Fatigue Driving Classification.<br>IEEE Transactions on Instrumentation and Measurement, 2019, 68, 2491-2497.                                             | 2.4 | 58        |
| 25 | A Complex Network-Based Broad Learning System for Detecting Driver Fatigue From EEG Signals. IEEE<br>Transactions on Systems, Man, and Cybernetics: Systems, 2021, 51, 5800-5808.                                          | 5.9 | 57        |
| 26 | An adaptive optimal-Kernel time-frequency representation-based complex network method for<br>characterizing fatigued behavior using the SSVEP-based BCI system. Knowledge-Based Systems, 2018, 152,<br>163-171.            | 4.0 | 54        |
| 27 | Q-learning solution for optimal consensus control of discrete-time multiagent systems using reinforcement learning. Journal of the Franklin Institute, 2019, 356, 6946-6967.                                               | 1.9 | 50        |
| 28 | A GPSO-optimized convolutional neural networks for EEG-based emotion recognition.<br>Neurocomputing, 2020, 380, 225-235.                                                                                                   | 3.5 | 50        |
| 29 | ADP-Based Robust Tracking Control for a Class of Nonlinear Systems With Unmatched Uncertainties.<br>IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50, 4056-4067.                                      | 5.9 | 48        |
| 30 | A recurrence quantification analysis-based channel-frequency convolutional neural network for emotion recognition from EEG. Chaos, 2018, 28, 085724.                                                                       | 1.0 | 47        |
| 31 | A recurrence network-based convolutional neural network for fatigue driving detection from EEG.<br>Chaos, 2019, 29, 113126.                                                                                                | 1.0 | 47        |
| 32 | Nonlinear characterization of oil–gas–water three-phase flow in complex networks. Chemical<br>Engineering Science, 2011, 66, 2660-2671.                                                                                    | 1.9 | 46        |
| 33 | Liquid holdup measurement with double helix capacitance sensor in horizontal oil–water two-phase<br>flow pipes. Chinese Journal of Chemical Engineering, 2015, 23, 268-275.                                                | 1.7 | 46        |
| 34 | Analysis of total energy and time-frequency entropy of gas–liquid two-phase flow pattern. Chemical<br>Engineering Science, 2012, 82, 144-158.                                                                              | 1.9 | 43        |
| 35 | Cross-correlation velocity measurement of horizontal oil–water two-phase flow by using parallel–wire capacitance probe. Experimental Thermal and Fluid Science, 2014, 53, 277-289.<br>                                     | 1.5 | 43        |
| 36 | Experimental flow pattern map, slippage and time–frequency representation of oil–water two-phase flow in horizontal small diameter pipes. International Journal of Multiphase Flow, 2015, 76, 168-186.                     | 1.6 | 43        |

| #  | Article                                                                                                                                                                                                 | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A Novel Deep Learning Framework for Industrial Multiphase Flow Characterization. IEEE Transactions on Industrial Informatics, 2019, 15, 5954-5962.                                                      | 7.2 | 40        |
| 38 | Dynamic Joint Domain Adaptation Network for Motor Imagery Classification. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2021, 29, 556-565.                                        | 2.7 | 40        |
| 39 | Nonlinear dynamical analysis of large diameter vertical upward oil–gas–water three-phase flow pattern characteristics. Chemical Engineering Science, 2010, 65, 5226-5236.                               | 1.9 | 39        |
| 40 | Impact of Degree Heterogeneity on Attack Vulnerability of Interdependent Networks. Scientific<br>Reports, 2016, 6, 32983.                                                                               | 1.6 | 39        |
| 41 | Multilayer Network from Multivariate Time Series for Characterizing Nonlinear Flow Behavior.<br>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2017, 27, 1750059.  | 0.7 | 38        |
| 42 | Multiplex Limited Penetrable Horizontal Visibility Graph from EEG Signals for Driver Fatigue<br>Detection. International Journal of Neural Systems, 2019, 29, 1850057.                                  | 3.2 | 38        |
| 43 | The measurement of gas–liquid two-phase flows in a small diameter pipe using a dual-sensor<br>multi-electrode conductance probe. Measurement Science and Technology, 2016, 27, 045101.                  | 1.4 | 37        |
| 44 | The measurement of local flow parameters for gas–liquid two-phase bubbly flows using a<br>dual-sensor probe array. Chemical Engineering Science, 2016, 144, 346-363.                                    | 1.9 | 36        |
| 45 | The experimental signals analysis for bubbly oil-in-water flow using multi-scale weighted-permutation entropy. Physica A: Statistical Mechanics and Its Applications, 2015, 417, 230-244.               | 1.2 | 34        |
| 46 | A Coincidence-Filtering-Based Approach for CNNs in EEG-Based Recognition. IEEE Transactions on Industrial Informatics, 2020, 16, 7159-7167.                                                             | 7.2 | 33        |
| 47 | The ultrasonic measurement of high water volume fraction in dispersed oil-in-water flows. Chemical Engineering Science, 2013, 94, 271-283.                                                              | 1.9 | 32        |
| 48 | Classification of EEG Signals on VEP-Based BCI Systems With Broad Learning. IEEE Transactions on<br>Systems, Man, and Cybernetics: Systems, 2021, 51, 7143-7151.                                        | 5.9 | 32        |
| 49 | Multi-scale cross entropy analysis for inclined oil–water two-phase countercurrent flow patterns.<br>Chemical Engineering Science, 2011, 66, 6099-6108.                                                 | 1.9 | 31        |
| 50 | Multiplex multivariate recurrence network from multi-channel signals for revealing oil-water spatial flow behavior. Chaos, 2017, 27, 035809.                                                            | 1.0 | 30        |
| 51 | Characterization of chaotic dynamic behavior in the gas–liquid slug flow using directed weighted complex network analysis. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 3005-3016. | 1.2 | 29        |
| 52 | A Graph-Temporal Fused Dual-Input Convolutional Neural Network for Detecting Sleep Stages from EEG Signals. IEEE Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 777-781.            | 2.2 | 29        |
| 53 | Nonlinear multi-scale dynamic stability of oil–gas–water three-phase flow in vertical upward pipe.<br>Chemical Engineering Journal, 2016, 302, 595-608.                                                 | 6.6 | 28        |
| 54 | Recurrence network analysis of experimental signals from bubbly oil-in-water flows. Physics Letters,<br>Section A: General, Atomic and Solid State Physics, 2013, 377, 457-462.                         | 0.9 | 26        |

| #  | Article                                                                                                                                                                              | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Time-dependent limited penetrable visibility graph analysis of nonstationary time series. Physica A:<br>Statistical Mechanics and Its Applications, 2017, 476, 43-48.                | 1.2 | 25        |
| 56 | A Deep Learning Method for Improving the Classification Accuracy of SSMVEP-Based BCI. IEEE<br>Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 3447-3451.          | 2.2 | 25        |
| 57 | Multivariate multiscale entropy analysis of horizontal oil–water two-phase flow. Physica A:<br>Statistical Mechanics and Its Applications, 2015, 417, 7-17.                          | 1.2 | 23        |
| 58 | Visibility graph analysis for re-sampled time series from auto-regressive stochastic processes.<br>Communications in Nonlinear Science and Numerical Simulation, 2017, 42, 396-403.  | 1.7 | 21        |
| 59 | A WPCA-Based Method for Detecting Fatigue Driving From EEG-Based Internet of Vehicles System. IEEE Access, 2019, 7, 124702-124711.                                                   | 2.6 | 21        |
| 60 | Rhythm-Dependent Multilayer Brain Network for the Detection of Driving Fatigue. IEEE Journal of<br>Biomedical and Health Informatics, 2021, 25, 693-700.                             | 3.9 | 20        |
| 61 | Core-Brain-Network-Based Multilayer Convolutional Neural Network for Emotion Recognition. IEEE Transactions on Instrumentation and Measurement, 2021, 70, 1-9.                       | 2.4 | 20        |
| 62 | Multivariate weighted recurrence network inference for uncovering oil-water transitional flow behavior in a vertical pipe. Chaos, 2016, 26, 063117.                                  | 1.0 | 19        |
| 63 | A Transformer based neural network for emotion recognition and visualizations of crucial EEG channels. Physica A: Statistical Mechanics and Its Applications, 2022, 603, 127700.     | 1.2 | 19        |
| 64 | Multi-Scale Permutation Entropy: A Complexity Measure for Discriminating Two-Phase Flow Dynamics.<br>Chinese Physics Letters, 2013, 30, 090501.                                      | 1.3 | 18        |
| 65 | Multivariate multiscale complex network analysis of vertical upward oil-water two-phase flow in a small diameter pipe. Scientific Reports, 2016, 6, 20052.                           | 1.6 | 18        |
| 66 | Multilayer brain network combined with deep convolutional neural network for detecting major depressive disorder. Nonlinear Dynamics, 2020, 102, 667-677.                            | 2.7 | 17        |
| 67 | A novel complex network-based deep learning method for characterizing gas–liquid two-phase flow.<br>Petroleum Science, 2021, 18, 259-268.                                            | 2.4 | 17        |
| 68 | Phase characterization of experimental gas–liquid two-phase flows. Physics Letters, Section A:<br>General, Atomic and Solid State Physics, 2010, 374, 4014-4017.                     | 0.9 | 15        |
| 69 | Scaling analysis of phase fluctuations in experimental three-phase flows. Physica A: Statistical Mechanics and Its Applications, 2011, 390, 3541-3550.                               | 1.2 | 15        |
| 70 | Dataâ€driven control based on simultaneous perturbation stochastic approximation with adaptive weighted gradient estimation. IET Control Theory and Applications, 2016, 10, 201-209. | 1.2 | 15        |
| 71 | Decentralized Neurocontroller Design With Critic Learning for Nonlinear-Interconnected Systems.<br>IEEE Transactions on Cybernetics, 2022, 52, 11672-11685.                          | 6.2 | 15        |
| 72 | A CNN identified by reinforcement learning-based optimization framework for EEG-based state evaluation. Journal of Neural Engineering, 2021, 18, 046059.                             | 1.8 | 15        |

| #  | Article                                                                                                                                                                                                                                                                                                                               | IF        | CITATIONS   |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------|
| 73 | Multiattention Adaptation Network for Motor Imagery Recognition. IEEE Transactions on Systems,<br>Man, and Cybernetics: Systems, 2022, 52, 5127-5139.                                                                                                                                                                                 | 5.9       | 15          |
| 74 | Characterization of SSMVEP-based EEG signals using multiplex limited penetrable horizontal visibility graph. Chaos, 2019, 29, 073119.                                                                                                                                                                                                 | 1.0       | 14          |
| 75 | Attention-Based Parallel Multiscale Convolutional Neural Network for Visual Evoked Potentials EEG<br>Classification. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 2887-2894.                                                                                                                                          | 3.9       | 14          |
| 76 | Seizure prediction in scalp EEG based channel attention dual-input convolutional neural network.<br>Physica A: Statistical Mechanics and Its Applications, 2021, 584, 126376.                                                                                                                                                         | 1.2       | 14          |
| 77 | Multivariate weighted recurrence network analysis of EEG signals from ERP-based smart home system.<br>Chaos, 2018, 28, 085713.                                                                                                                                                                                                        | 1.0       | 13          |
| 78 | Three-dimensional regional oceanic element field reconstruction with multiple underwater gliders in the Northern South China Sea. Applied Ocean Research, 2020, 105, 102405.                                                                                                                                                          | 1.8       | 13          |
| 79 | Multitask-Based Temporal-Channelwise CNN for Parameter Prediction of Two-Phase Flows. IEEE Transactions on Industrial Informatics, 2021, 17, 6329-6336.                                                                                                                                                                               | 7.2       | 13          |
| 80 | The Finite Element Analysis for Parallel-wire Capacitance Probe in Small Diameter Two-phase Flow Pipe.<br>Chinese Journal of Chemical Engineering, 2013, 21, 813-819.                                                                                                                                                                 | 1.7       | 12          |
| 81 | Reconstructing multi-mode networks from multivariate time series. Europhysics Letters, 2017, 119, 50008.                                                                                                                                                                                                                              | 0.7       | 12          |
| 82 | A novel time-frequency multilayer network for multivariate time series analysis. New Journal of Physics, 2018, 20, 125005.                                                                                                                                                                                                            | 1.2       | 12          |
| 83 | An ADDHP-based Q-learning algorithm for optimal tracking control of linear discrete-time systems with unknown dynamics. Applied Soft Computing Journal, 2019, 82, 105593.                                                                                                                                                             | 4.1       | 12          |
| 84 | Event-driven <mml:math <br="" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">id="d1e1238"<br/>altimg="si296.svg"&gt; <mml:msub> <mml:mrow> <mml:mi>H </mml:mi> </mml:mrow> <mml:mi>â^ž&lt;<br/>control with critic learning for nonlinear systems. Neural Networks, 2020, 132, 30-42.</mml:mi></mml:msub></mml:math> | /mml:mi>< | /mml:mrow>< |
| 85 | Markov transition probability-based network from time series for characterizing experimental two-phase flow. Chinese Physics B, 2013, 22, 050507.                                                                                                                                                                                     | 0.7       | 11          |
| 86 | Complex networks from experimental horizontal oil–water flows: Community structure detection<br>versus flow pattern discrimination. Physics Letters, Section A: General, Atomic and Solid State<br>Physics, 2015, 379, 790-797.                                                                                                       | 0.9       | 11          |
| 87 | Disrupted Time-Dependent and Functional Connectivity Brain Network in Alzheimer's Disease: A<br>Resting-State fMRI Study Based on Visibility Graph. Current Alzheimer Research, 2020, 17, 69-79.                                                                                                                                      | 0.7       | 11          |
| 88 | VISIBILITY GRAPHS FROM EXPERIMENTAL THREE-PHASE FLOW FOR CHARACTERIZING DYNAMIC FLOW BEHAVIOR. International Journal of Modern Physics C, 2012, 23, 1250069.                                                                                                                                                                          | 0.8       | 10          |
| 89 | Directed weighted network structure analysis of complex impedance measurements for characterizing oil-in-water bubbly flow. Chaos, 2017, 27, 035805.                                                                                                                                                                                  | 1.0       | 10          |
| 90 | Response Characteristics of Coaxial Capacitance Sensor for Horizontal Segregated and Non-Uniform<br>Oil-Water Two-Phase Flows. IEEE Sensors Journal, 2017, 17, 359-368.                                                                                                                                                               | 2.4       | 10          |

| #   | Article                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | A Multivariate Weighted Ordinal Pattern Transition Network for Characterizing Driver Fatigue<br>Behavior from EEG Signals. International Journal of Bifurcation and Chaos in Applied Sciences and<br>Engineering, 2020, 30, 2050118.       | 0.7 | 10        |
| 92  | Multi-scale complexity entropy causality plane: An intrinsic measure for indicating two-phase flow structures. Chinese Physics B, 2014, 23, 120502.                                                                                        | 0.7 | 9         |
| 93  | SPSAâ€based dataâ€driven control strategy for load frequency control of power systems. IET Generation,<br>Transmission and Distribution, 2018, 12, 414-422.                                                                                | 1.4 | 9         |
| 94  | Complex Network Analysis of Wire-Mesh Sensor Measurements for Characterizing Vertical<br>Gas–Liquid Two-Phase Flows. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67,<br>1134-1138.                                 | 2.2 | 9         |
| 95  | Model-free adaptive nonlinear control of the absorption refrigeration system. Nonlinear Dynamics, 2022, 107, 1623-1635.                                                                                                                    | 2.7 | 9         |
| 96  | A gradient-based automatic optimization CNN framework for EEG state recognition. Journal of Neural Engineering, 2022, 19, 016009.                                                                                                          | 1.8 | 9         |
| 97  | Multifractal analysis of inclined oil-water countercurrent flow. Petroleum Science, 2014, 11, 111-121.                                                                                                                                     | 2.4 | 8         |
| 98  | Multilayer limited penetrable visibility graph for characterizing the gas-liquid flow behavior.<br>Chemical Engineering Journal, 2021, 407, 127229.                                                                                        | 6.6 | 8         |
| 99  | MHLCNN: Multi-Harmonic Linkage CNN Model for SSVEP and SSMVEP Signal Classification. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 244-248.                                                                      | 2.2 | 8         |
| 100 | A Multifrequency Brain Network-Based Deep Learning Framework for Motor Imagery Decoding. Neural<br>Plasticity, 2020, 2020, 1-11.                                                                                                           | 1.0 | 8         |
| 101 | DSCNN: Dilated Shuffle CNN Model for SSVEP Signal Classification. IEEE Sensors Journal, 2022, 22, 12036-12043.                                                                                                                             | 2.4 | 8         |
| 102 | Testing for Nonlinearity in Dynamic Characteristics of Vertical Upward Oil-Gas-Water Three-phase<br>Bubble and Slug Flows. Chinese Journal of Chemical Engineering, 2012, 20, 870-882.                                                     | 1.7 | 7         |
| 103 | Characterization of flow pattern transitions for horizontal liquid–liquid pipe flows by using<br>multi-scale distribution entropy in coupled 3D phase space. Physica A: Statistical Mechanics and Its<br>Applications, 2017, 469, 136-147. | 1.2 | 7         |
| 104 | Approximately Optimal Control of Discrete-Time Nonlinear Switched Systems Using Globalized Dual<br>Heuristic Programming. Neural Processing Letters, 2020, 52, 1089-1108.                                                                  | 2.0 | 7         |
| 105 | A multiplex visibility graph motifâ€based convolutional neural network for characterizing sleep stages<br>using EEG signals. Brain Science Advances, 2020, 6, 355-363.                                                                     | 0.3 | 7         |
| 106 | Studying Multi-Frequency Multilayer Brain Network via Deep Learning for EEG-Based Epilepsy<br>Detection. IEEE Sensors Journal, 2021, 21, 27651-27658.                                                                                      | 2.4 | 7         |
| 107 | Multilayer Network-Based CNN Model for Emotion Recognition. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2022, 32, .                                                                                | 0.7 | 7         |
| 108 | A Multiscale Feature Extraction Network Based on Channel-Spatial Attention for Electromyographic<br>Signal Classification. IEEE Transactions on Cognitive and Developmental Systems, 2023, 15, 591-601.                                    | 2.6 | 7         |

| #   | Article                                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Uncovering dynamic behaviors underlying experimental oil–water two-phase flow based on dynamic segmentation algorithm. Physica A: Statistical Mechanics and Its Applications, 2013, 392, 1180-1187.             | 1.2 | 6         |
| 110 | Complex network analysis of phase dynamics underlying oil-water two-phase flows. Scientific Reports, 2016, 6, 28151.                                                                                            | 1.6 | 6         |
| 111 | Wavelet multiresolution complex network for decoding brain fatigued behavior from P300 signals.<br>Physica A: Statistical Mechanics and Its Applications, 2018, 506, 221-228.                                   | 1.2 | 6         |
| 112 | A Wavelet Time-Frequency Representation Based Complex Network Method for Characterizing Brain Activities Underlying Motor Imagery Signals. IEEE Access, 2018, 6, 65796-65802.                                   | 2.6 | 6         |
| 113 | COVID-19 Screening in Chest X-Ray Images Using Lung Region Priors. IEEE Journal of Biomedical and Health Informatics, 2021, 25, 4119-4127.                                                                      | 3.9 | 6         |
| 114 | Attractor comparison analysis for characterizing vertical upward oil—gas—water three-phase flow.<br>Chinese Physics B, 2014, 23, 034702.                                                                        | 0.7 | 5         |
| 115 | Multivariate weighted recurrent network for analyzing SSMVEP signals from EEG literate and illiterate. Europhysics Letters, 2019, 127, 40004.                                                                   | 0.7 | 5         |
| 116 | A Deep Branch-Aggregation Network for Recognition of Gas–Liquid Two-Phase Flow Structure. IEEE<br>Transactions on Instrumentation and Measurement, 2021, 70, 1-8.                                               | 2.4 | 5         |
| 117 | Multi-Scale Time Asymmetry for Detecting the Breakage of Slug Flow Structure. Chinese Physics<br>Letters, 2014, 31, 120501.                                                                                     | 1.3 | 4         |
| 118 | PageRank versatility analysis of multilayer modality-based network for exploring the evolution of oil-water slug flow. Scientific Reports, 2017, 7, 5493.                                                       | 1.6 | 4         |
| 119 | Characterization of Two-Phase Flow Structure by Deep Learning-Based Super Resolution. IEEE<br>Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 782-786.                                       | 2.2 | 4         |
| 120 | Convolutional neural network based on recurrence plot for EEG recognition. Chaos, 2021, 31, 123120.                                                                                                             | 1.0 | 4         |
| 121 | Detecting community structure in complex networks based on K-means clustering and data field theory. , 2008, , .                                                                                                |     | 3         |
| 122 | Time-frequency analysis of vertical upward oil-water two phase flow. , 2012, , .                                                                                                                                |     | 3         |
| 123 | CHARACTERIZATION OF HORIZONTAL GAS–LIQUID TWO-PHASE FLOW USING MARKOV MODEL-BASED COMPLEX NETWORK. International Journal of Modern Physics C, 2013, 24, 1350028.                                                | 0.8 | 3         |
| 124 | Complex network inference from P300 signals: Decoding brain state under visual stimulus for<br>able-bodied and disabled subjects. Physica A: Statistical Mechanics and Its Applications, 2016, 460,<br>294-303. | 1.2 | 3         |
| 125 | Multilayer Network from Multiple Entropies for Characterizing Gas-Liquid Nonlinear Flow Behavior.<br>International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050014.     | 0.7 | 3         |
| 126 | Complex Network Analysis of Experimental EEG Signals for Decoding Brain Cognitive State. IEEE<br>Transactions on Circuits and Systems II: Express Briefs, 2021, 68, 531-535.                                    | 2.2 | 3         |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Local Property of Recurrence Network for Investigating Gas-Liquid Two-Phase Flow Characteristics.<br>Chinese Physics Letters, 2013, 30, 050501.                                                                                                       | 1.3 | 2         |
| 128 | The Application of Auto-Disturbance Rejection Control Optimized by Least Squares Support Vector<br>Machines Method and Time-Frequency Representation in Voltage Source Converter-High Voltage<br>Direct Current System. PLoS ONE, 2015, 10, e0130135. | 1.1 | 2         |
| 129 | How to analytically characterize the epidemic threshold within the coupled disease–behavior systems?. Physics of Life Reviews, 2015, 15, 32-34.                                                                                                       | 1.5 | 2         |
| 130 | Modality transition-based network from multivariate time series for characterizing horizontal oil–water flow patterns. International Journal of Modern Physics C, 2015, 26, 1550034.                                                                  | 0.8 | 2         |
| 131 | Multivariate empirical mode decomposition and multiscale entropy analysis of EEG signals from SSVEP-based BCI system. Europhysics Letters, 2018, 122, 40010.                                                                                          | 0.7 | 2         |
| 132 | Functional alteration of brain network in schizophrenia: An fMRI study based on mutual information.<br>Europhysics Letters, 2019, 128, 50005.                                                                                                         | 0.7 | 2         |
| 133 | Stage-Wise Densely Connected Network for Parameter Measurement of Two-Phase Flows. IEEE Sensors<br>Journal, 2021, 21, 18123-18131.                                                                                                                    | 2.4 | 2         |
| 134 | Multiscale permutation entropy analysis of oil-in-water type two-phase flow pattern. Wuli<br>Xuebao/Acta Physica Sinica, 2012, 61, 230507.                                                                                                            | 0.2 | 2         |
| 135 | Howling Detection and Suppression Based on Segmented Notch Filtering. Sensors, 2021, 21, 8062.                                                                                                                                                        | 2.1 | 2         |
| 136 | Identification of Flow Pattern in Two-Phase Flow Based on Complex Network Theory. , 2008, , .                                                                                                                                                         |     | 1         |
| 137 | Gas-liquid two phase flow pattern evolution characteristics based on detrended fluctuation analysis.<br>Mapan - Journal of Metrology Society of India, 2011, 26, 255-265.                                                                             | 1.0 | 1         |
| 138 | IEEE Access Special Section Editorial: Big Data Learning and Discovery. IEEE Access, 2021, 9, 158064-158073.                                                                                                                                          | 2.6 | 1         |
| 139 | Strength distribution in complex network for analyzing experimental two-phase flow signals. , 2012, , .                                                                                                                                               |     | 0         |
| 140 | Visibility graph analysis of fluid flow signals. , 2012, , .                                                                                                                                                                                          |     | 0         |
| 141 | Community Detection in Flow Pattern Complex Network. SpringerBriefs in Applied Sciences and Technology, 2014, , 25-34.                                                                                                                                | 0.2 | 0         |
| 142 | Recurrence Network for Characterizing Bubbly Oil-in-Water Flows. SpringerBriefs in Applied Sciences and Technology, 2014, , 95-102.                                                                                                                   | 0.2 | 0         |
| 143 | Gas-Water Fluid Structure Complex Network. SpringerBriefs in Applied Sciences and Technology, 2014,<br>, 47-62.                                                                                                                                       | 0.2 | 0         |
| 144 | Oil-Water Fluid Structure Complex Network. SpringerBriefs in Applied Sciences and Technology, 2014, , 63-71.                                                                                                                                          | 0.2 | 0         |

| #   | Article                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Markov Transition Probability-Based Network for Characterizing Horizontal Gas-Liquid Two-Phase<br>Flow. SpringerBriefs in Applied Sciences and Technology, 2014, , 85-93. | 0.2 | 0         |
| 146 | Advances in Time Series Analysis and Its Applications. Mathematical Problems in Engineering, 2016, 2016, 1-1.                                                             | 0.6 | 0         |
| 147 | Multiresolution Multiplex Network for Analyzing Multichannel Fluid Flow Signals. IEEE Transactions on Circuits and Systems II: Express Briefs, 2020, 67, 2179-2183.       | 2.2 | 0         |
| 148 | Temporal Complex Network Analysis. , 2019, , 287-300.                                                                                                                     |     | 0         |
| 149 | A Multifeatured Time–Frequency Neural Network System for Classifying sEMG. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69, 4588-4592.             | 2.2 | 0         |