Jingon Joung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965420/publications.pdf

Version: 2024-02-01

113 papers	2,525 citations	24 h-index	223531 46 g-index
113	113 docs citations	113	1889
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Blind symbol and carrier synchronization with carrier frequency offset estimation for space–time line coded systems. ICT Express, 2023, 9, 235-240.	3.3	3
2	Generalized Space–Time Line Code With Receive Combining for MIMO Systems. IEEE Systems Journal, 2022, 16, 1897-1908.	2.9	12
3	Artificial-Noise-Aided Space–Time Line Code for Enhancing Physical Layer Security of Multiuser MIMO Downlink Transmission. IEEE Systems Journal, 2022, 16, 1289-1300.	2.9	9
4	Intelligent Reflecting Surface-Aided Space–Time Line Coded Systems. IEEE Wireless Communications Letters, 2022, 11, 245-249.	3.2	10
5	Full-Rate Space–Time Line Code for Four Receive Antennas. IEEE Wireless Communications Letters, 2022, 11, 602-606.	3.2	4
6	A Multi-Route Cascaded IRSs Beamforming Scheme for mmWave Communication Systems. IEEE Transactions on Vehicular Technology, 2022, 71, 6813-6818.	3.9	1
7	Performance Analysis of Uplink NOMA With Constellation–Rotated STLC for IoT Networks. IEEE Open Journal of the Communications Society, 2022, 3, 705-717.	4.4	10
8	Process-and-Forward two-way relay using multiple space-time line codes. Signal Processing, 2022, 196, 108526.	2.1	2
9	Security Energy Efficiency Analysis of Analog Collaborative Beamforming With Stochastic Virtual Antenna Array of UAV Swarm. IEEE Transactions on Vehicular Technology, 2022, 71, 8381-8397.	3.9	15
10	Ergodic Capacity of Space–Time Line Code Systems With Transmit Antenna Selection. IEEE Transactions on Vehicular Technology, 2022, 71, 9089-9094.	3.9	8
11	Modified Block Coordinate Descent Method for Intelligent Reflecting Surface-Aided Space-Time Line Coded Systems. IEEE Wireless Communications Letters, 2022, 11, 1820-1824.	3.2	3
12	Frame Structure Design for Vehicular-to-Roadside Unit Communications Using Space–Time Line Code Under Time-Varying Channels. IEEE Systems Journal, 2021, 15, 3150-3153.	2.9	12
13	Space–Time Line Code for Enhancing Physical Layer Security of Multiuser MIMO Uplink Transmission. IEEE Systems Journal, 2021, 15, 3336-3347.	2.9	27
14	Bandwidth Design for Energy-Efficient Unmanned Aerial Vehicle Using Space–Time Line Code. IEEE Systems Journal, 2021, 15, 3154-3157.	2.9	15
15	Optimization of Frame Structure and Fronthaul Compression for Uplink C-RAN Under Time-Varying Channels. IEEE Transactions on Wireless Communications, 2021, 20, 1278-1292.	6.1	3
16	Resource Allocation Scheme Based on Deep Reinforcement Learning for Device-to-Device Communications. , 2021, , .		7
17	Deep Gated Recurrent Unit-Based 3D Localization for UWB Systems. IEEE Access, 2021, 9, 68798-68813.	2.6	11
18	Downlink Synchronization for OTFS-Based Cellular Systems in High Doppler Environments. IEEE Access, 2021, 9, 73575-73589.	2.6	11

#	Article	IF	Citations
19	Secure IoT Communications Using HARQ-Based Beamforming for MISOSE Channels. IEEE Internet of Things Journal, 2021, 8, 17211-17226.	5. 5	10
20	Equalization-Based Beamforming for Secure Multicasting in Multicast Wiretap Channels. IEEE Access, 2021, 9, 33826-33835.	2.6	2
21	Over-the-Air Computation Strategy Using Space–Time Line Code for Data Collection by Multiple Unmanned Aerial Vehicles. IEEE Access, 2021, 9, 105230-105241.	2.6	6
22	Optimization for Wireless-Powered IoT Networks Enabled by an Energy-Limited UAV Under Practical Energy Consumption Model. IEEE Wireless Communications Letters, 2021, 10, 567-571.	3.2	25
23	Design of the Power and Dimension of Artificial Noise for Secure Communication Systems. IEEE Transactions on Communications, 2021, 69, 4001-4010.	4.9	15
24	Universal gated recurrent unit-based 3D localization method for ultra-wideband systems. ICT Express, 2021, 7, 540-544.	3.3	1
25	Doppler-tolerant sequence design for positioning high-speed vehicles in millimeter-wave cellular systems. Vehicular Communications, 2021, 30, 100358.	2.7	2
26	Joint Beamforming and Reconfigurable Intelligent Surface Design for Two-Way Relay Networks. IEEE Transactions on Communications, 2021, 69, 5620-5633.	4.9	30
27	Joint Uplink-and-Downlink Optimization of 3-D UAV Swarm Deployment for Wireless-Powered IoT Networks. IEEE Internet of Things Journal, 2021, 8, 13397-13413.	5.5	13
28	Intelligent Reflecting Surface-Assisted Cognitive Radio System. IEEE Transactions on Communications, 2021, 69, 675-687.	4.9	146
29	Beamwidth Design for Beam Scanning in Millimeter-Wave Cellular Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 1111-1116.	3.9	20
30	Throughput Maximization With Rate-Dependent Power Consumption in Battery-Limited Multiuser Networks. IEEE Transactions on Vehicular Technology, 2020, 69, 1141-1146.	3.9	2
31	Flexible-beamwidth beam scanning for low-latency cell discovery in mmWave systems. Science China Information Sciences, 2020, 63, 1.	2.7	0
32	Intelligent Reflecting Surface (IRS)-Enhanced Cognitive Radio System., 2020,,.		24
33	Stair-type parallel digital predistorter for power amplifier linearisation and harmonic reduction. International Journal of Electronics Letters, 2020, , 1-14.	0.7	0
34	Convolutional Neural Network (CNN)-Based Frame Synchronization Method. Applied Sciences (Switzerland), 2020, 10, 7267.	1.3	4
35	High Gain and Low-Profile Stacked Magneto-Electric Dipole Antenna for Phased Array Beamforming. IEEE Access, 2020, 8, 180295-180304.	2.6	11
36	Iterative Carrier Frequency Offset Estimation Scheme for Faster-Than-Nyquist Signaling Systems. IEEE Photonics Technology Letters, 2020, 32, 1203-1206.	1.3	4

#	Article	IF	CITATIONS
37	Protect Your Sky: A Survey of Counter Unmanned Aerial Vehicle Systems. IEEE Access, 2020, 8, 168671-168710.	2.6	69
38	Revisiting Information Detection and Energy Harvesting: A Power Splitting-Based Approach. Entropy, 2020, 22, 1341.	1.1	0
39	Deep Learning-Based Localization for UWB Systems. Electronics (Switzerland), 2020, 9, 1712.	1.8	17
40	Multiuser Space–Time Line Code With Transmit Antenna Selection. IEEE Access, 2020, 8, 71930-71939.	2.6	16
41	Optimization for Full-Duplex Rotary-Wing UAV-Enabled Wireless-Powered IoT Networks. IEEE Transactions on Wireless Communications, 2020, 19, 5057-5072.	6.1	57
42	Deep Reinforcement Learning for Distributed Dynamic MISO Downlink-Beamforming Coordination. IEEE Transactions on Communications, 2020, 68, 6070-6085.	4.9	40
43	Random Space–Time Line Code With Proportional Fairness Scheduling. IEEE Access, 2020, 8, 35253-35262.	2.6	13
44	Uplink NOMA Random Access Systems With Space–Time Line Code. IEEE Transactions on Vehicular Technology, 2020, 69, 4522-4526.	3.9	20
45	Double Space–Time Line Codes. IEEE Transactions on Vehicular Technology, 2020, 69, 2316-2321.	3.9	27
46	Power-Efficient Formation of UAV Swarm: Just Like Flying Birds?., 2020,,.		3
47	Transmit Antenna Selection for Space–Time Line Code Systems. IEEE Transactions on Communications, 2020, , 1-1.	4.9	13
48	Transmission power and altitude design for energyâ€efficient mission completion of smallâ€size unmanned aerial vehicle. Electronics Letters, 2020, 56, 1219-1222.	0.5	3
49	Convolutional Neural Network-based UWB System Localization. , 2020, , .		1
50	Optimal Time Allocation for Full-Duplex Wireless-Powered IoT Networks with Unmanned Aerial Vehicle. , 2019, , .		7
51	Space–time line coded regenerative twoâ€way relay systems with power control. Electronics Letters, 2019, 55, 694-696.	0.5	12
52	Space–Time Line Codes With Power Allocation for Regenerative Two-Way Relay Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 4884-4893.	3.9	28
53	Beamforming for UAV Communications Under Battery Life Constraint. , 2019, , .		1
54	5G Ultra-Reliable Low-Latency Communication Implementation Challenges and Operational Issues with IoT Devices. Electronics (Switzerland), 2019, 8, 981.	1.8	129

#	Article	IF	CITATIONS
55	Beamwidth of Base Stations for Maximizing Coverage of Aerial Users. , 2019, , .		О
56	Power Control Method for Energy Efficient Buffer-Aided Relay Systems. Energies, 2019, 12, 3234.	1.6	1
57	Artificial Noise Injection and Its Power Loading Methods for Secure Space-Time Line Coded Systems. Entropy, 2019, 21, 515.	1.1	19
58	A Compact Crossed Inverted-V Antenna with a Common Reflector for Polarization Diversity in the IoT. Electronics (Switzerland), 2019, 8, 637.	1.8	6
59	Support Vector Machine-Based Transmit Antenna Allocation for Multiuser Communication Systems. Entropy, 2019, 21, 471.	1.1	14
60	Secrecy-Aware Altitude Optimization for Quasi-Static UAV Base Station Without Eavesdropper Location Information. IEEE Communications Letters, 2019, 23, 851-854.	2.5	39
61	Machine Learning Based Blind Decoding for Space–Time Line Code (STLC) Systems. IEEE Transactions on Vehicular Technology, 2019, 68, 5154-5158.	3.9	29
62	A Study on Probabilistic Line-of-Sight Air-to-Ground Channel Models. , 2019, , .		3
63	CNNâ€based Tx–Rx distance estimation for UWB system localisation. Electronics Letters, 2019, 55, 938-940.	0.5	19
64	A Novel Non-Orthogonal Multiple Access with Space-Time Line Codes for Massive IoT Networks. , 2019, , .		7
65	Joint Uplink and Downlink 3D Optimization of an UAV Swarm for Wireless-Powered NB-IoT., 2019, , .		6
66	Performance Analysis of Uplink NOMA-IoT Networks with Space-Time Line Code., 2019,,.		10
67	SSKM: Scalable and Secure Key Management Scheme for Group Signature Based Authentication and CRL in VANET. Electronics (Switzerland), 2019, 8, 1330.	1.8	11
68	Resource Allocation for Multiple Device-to-Device Cluster Multicast Communications Underlay Cellular Networks. IEEE Communications Letters, 2018, 22, 412-415.	2.5	27
69	Space–Time Line Code for Massive MIMO and Multiuser Systems With Antenna Allocation. IEEE Access, 2018, 6, 962-979.	2.6	39
70	Space–Time Line Code. IEEE Access, 2018, 6, 1023-1041.	2.6	55
71	Transmit Antenna Shuffling for Orthogonal Space–Time Block Code Systems Using Uneven Power Amplifiers. IEEE Transactions on Vehicular Technology, 2018, 67, 6673-6678.	3.9	2
72	Distributed Precoder Design With Direct-Link Channel Information for Distributed Antenna Systems. IEEE Transactions on Vehicular Technology, 2018, 67, 3679-3684.	3.9	4

#	Article	IF	CITATIONS
73	Energy Efficient Space–Time Line Coded Regenerative Two-Way Relay Under Per-Antenna Power Constraints. IEEE Access, 2018, 6, 47026-47035.	2.6	32
74	Multiuser Space–Time Line Code With Optimal and Suboptimal Power Allocation Methods. IEEE Access, 2018, 6, 51766-51775.	2.6	25
75	Uneven Power Amplifier Shuffling for Space-Time Line Code Systems. IEEE Access, 2018, 6, 58491-58500.	2.6	15
76	Low Complexity Wireless Powered Information Transfer Strategy for Multiuser MIMO Systems. IEEE Access, 2018, 6, 68612-68620.	2.6	4
77	Low-Complexity Multiuser MIMO Precoder Design Under Per-Antenna Power Constraints. IEEE Transactions on Vehicular Technology, 2018, 67, 9011-9015.	3.9	10
78	Wireless Powered Information Transfer Based on Zero-Forcing for Multiuser MIMO Systems. IEEE Transactions on Vehicular Technology, 2018, 67, 8561-8570.	3.9	18
79	IEEE Access Special Section Editorial: Recent Advances in Full-Duplex Radios and Networks. IEEE Access, 2018, 6, 27555-27557.	2.6	0
80	Power efficient 2 × 1 space–time block code system with antenna shuffling. Electronics Letters, 2018, 54, 458-460.	0.5	1
81	CSI Partitioning Method with PCA-Based Compression for Low-Complexity Feedback of Large-Dimensional Channels. IEEE Communications Letters, 2017, 21, 544-547.	2.5	0
82	Beamforming vector design for regenerative wired twoâ€way relay systems. Electronics Letters, 2017, 53, 596-598.	0.5	5
83	Linear Precoder Design for an AF Two-Way MIMO Relay Node with No Source Node Precoding. IEEE Transactions on Vehicular Technology, 2017, 66, 10526-10531.	3.9	12
84	On Joint Pareto Frontier in Multiple Access and Relay Rate Regions With Rayleigh Fading. IEEE Transactions on Vehicular Technology, 2017, 66, 3777-3786.	3.9	7
85	Operation strategy for wirelessâ€powered heterogeneous sensor networks. Electronics Letters, 2017, 53, 1437-1439.	0.5	3
86	User Assignment Algorithms for Energy-Efficiency-Aware Multiple Access Systems. IEEE Communications Letters, 2016, 20, 1531-1534.	2.5	1
87	Principal-Component-Analysis-Inspired Channel Feedback Framework: Sorting-and-Sampling and Interpolation-and-Rearrangement. IEEE Communications Letters, 2016, 20, 2043-2046.	2.5	3
88	Channel Correlation Modeling and its Application to Massive MIMO Channel Feedback Reduction. IEEE Transactions on Vehicular Technology, 2016, , 1-1.	3.9	18
89	Machine Learning-Based Antenna Selection in Wireless Communications. IEEE Communications Letters, 2016, 20, 2241-2244.	2.5	152
90	Multicast Linear Precoding for MIMO-OFDM Systems. IEEE Communications Letters, 2015, 19, 993-996.	2.5	16

#	Article	IF	Citations
91	Precoder design for distributed antenna systems (DAS) with limited channel state information. , 2015, , .		3
92	A Survey on Power-Amplifier-Centric Techniques for Spectrum- and Energy-Efficient Wireless Communications. IEEE Communications Surveys and Tutorials, 2015, 17, 315-333.	24.8	117
93	Pecuniary Efficiency of Distributed Antenna Systems. IEEE Communications Letters, 2015, 19, 775-778.	2.5	5
94	A Distributed Resource Reservation Scheme for Handover Failure Reduction. IEEE Wireless Communications Letters, 2015, 4, 537-540.	3.2	7
95	Spectral Efficiency and Energy Efficiency of OFDM Systems: Impact of Power Amplifiers and Countermeasures. IEEE Journal on Selected Areas in Communications, 2014, 32, 208-220.	9.7	81
96	Energy-Efficient, Large-Scale Distributed-Antenna System (L-DAS) for Multiple Users. IEEE Journal on Selected Topics in Signal Processing, 2014, 8, 954-965.	7.3	153
97	EMA: Energy-Efficiency-Aware Multiple Access. IEEE Communications Letters, 2014, 18, 1071-1074.	2.5	8
98	Wireless power transfer and communication for sensors: dynamic frame-switching (DFS) policy. , 2014, , .		4
99	Power Amplifier Switching (PAS) for Energy Efficient Systems. IEEE Wireless Communications Letters, 2013, 2, 14-17.	3.2	26
100	Adaptive Coordinated Napping (CoNap) for Energy Saving in Wireless Networks. IEEE Transactions on Wireless Communications, 2013, 12, 5656-5667.	6.1	24
101	Energy Efficient Power Control for Distributed Transmitters with ZF-Based Multiuser MIMO Precoding. IEEE Communications Letters, 2013, 17, 1766-1769.	2.5	21
102	Energy efficient network-flow-based algorithm for multiuser multicarrier systems. IET Networks, 2012, 1, 66.	1.1	14
103	Energy Minimization in OFDMA Downlink Systems: A Sequential Linear Assignment Algorithm for Resource Allocation. IEEE Wireless Communications Letters, 2012, 1, 300-303.	3.2	15
104	Power Efficient Resource Allocation for Downlink OFDMA Relay Cellular Networks. IEEE Transactions on Signal Processing, 2012, 60, 2447-2459.	3.2	27
105	Phase Rotation and Link Selection Methods for DSTTD-Based Two-Path Relay Systems. IEEE Communications Letters, 2011, 15, 278-280.	2.5	4
106	Frame Design and Throughput Evaluation for Practical Multiuser MIMO OFDMA Systems. IEEE Transactions on Vehicular Technology, 2011, 60, 3127-3141.	3.9	11
107	User Selection Methods for Multiuser Two-Way Relay Communications Using Space Division Multiple Access. IEEE Transactions on Wireless Communications, 2010, 9, 2130-2136.	6.1	34
108	Multiuser Two-Way Amplify-and-Forward Relay Processing and Power Control Methods for Beamforming Systems. IEEE Transactions on Signal Processing, 2010, 58, 1833-1846.	3.2	317

#	ARTICLE	IF	CITATIONS
109	Antenna Selection with Superposition for 4×2 DSTTD Systems. IEEE Communications Letters, 2009, 13, 483-485.	2.5	3
110	A Method for the Direction-of-Arrival Estimation of Incoherently Distributed Sources. IEEE Transactions on Vehicular Technology, 2008, 57, 2885-2893.	3.9	35
111	A Computationally Efficient Criterion for Antenna Shuffling in DSTTD Systems. IEEE Communications Letters, 2007, 11, 732-734.	2.5	14
112	Regularized Channel Diagonalization for Multiuser MIMO Downlink Using a Modified MMSE Criterion. IEEE Transactions on Signal Processing, 2007, 55, 1573-1579.	3.2	55
113	Space–time line coded spatial modulation. Electronics Letters, 0, , .	0.5	O