Kyeong Youl Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965328/publications.pdf

Version: 2024-02-01

113 papers	2,908 citations	29 h-index	197535 49 g-index
113	113 docs citations	113	3369
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Enhanced photoactivity of silica-embedded titania particles prepared by sol–gel process for the decomposition of trichloroethylene. Applied Catalysis B: Environmental, 2000, 25, 249-256.	10.8	220
2	Anatase-phase titania: preparation by embedding silica and photocatalytic activity for the decomposition of trichloroethylene. Journal of Photochemistry and Photobiology A: Chemistry, 1999, 127, 117-122.	2.0	164
3	One-Pot Facile Synthesis of Ant-Cave-Structured Metal Oxide–Carbon Microballs by Continuous Process for Use as Anode Materials in Li-Ion Batteries. Nano Letters, 2013, 13, 5462-5466.	4.5	151
4	Luminescent Properties of (Sr, Zn)Al2O4:Eu2+,B3+Particles as a Potential Green Phosphor for UV LEDs. Chemistry of Materials, 2006, 18, 2249-2255.	3.2	116
5	Effect of surface area and crystallite size on luminescent intensity of Y2O3:Eu phosphor prepared by spray pyrolysis. Materials Letters, 2005, 59, 2451-2456.	1.3	88
6	Luminescent Properties of (Ba,Sr)MgAl10O17:Mn,Eu Green Phosphor Prepared by Spray Pyrolysis under VUV Excitation. Chemistry of Materials, 2005, 17, 2729-2734.	3.2	86
7	Enhanced luminescent properties of Y3Al5O12:Tb3+,Ce3+ phosphor prepared by spray pyrolysis. Journal of Luminescence, 2007, 126, 469-474.	1.5	80
8	Linear relationship between the crystallite size and the photoactivity of non-porous titania ranging from nanometer to micrometer size. Applied Catalysis A: General, 2002, 224, 229-237.	2.2	76
9	Photoactivity of SiO2/TiO2 and ZrO2/TiO2 mixed oxides prepared by sol–gel method. Materials Letters, 2004, 58, 2897-2900.	1.3	75
10	Photoluminescence and photoactivity of titania particles prepared by the sol–gel technique: effect of calcination temperature. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 170, 247-252.	2.0	67
11	Amorphous GeO _{<i>x</i>} -Coated Reduced Graphene Oxide Balls with Sandwich Structure for Long-Life Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015, 7, 13952-13959.	4.0	63
12	Preparation of nano-sized BaTiO3 particle by citric acid-assisted spray pyrolysis. Journal of Alloys and Compounds, 2005, 395, 280-285.	2.8	60
13	Correlation of photoluminescence of (Y, Ln)VO4:Eu3+ (Ln=Gd and La) phosphors with their crystal structures. Solid State Communications, 2005, 133, 651-656.	0.9	58
14	Nano-sized ceria particles prepared by spray pyrolysis using polymeric precursor solution. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 127, 99-104.	1.7	58
15	Morphology Control and Optimization of Luminescent Property of YBO[sub 3]:Tb Phosphor Particles Prepared by Spray Pyrolysis. Journal of the Electrochemical Society, 2004, 151, H69.	1.3	45
16	Characterization of mesoporous alumina particles prepared by spray pyrolysis of Al(NO3)2·9H2O precursor: Effect of CTAB and urea. Microporous and Mesoporous Materials, 2010, 128, 85-90.	2.2	45
17	Improved photoluminescence of BaMgAl10O17 blue phosphor prepared by spray pyrolysis. Journal of Luminescence, 2003, 105, 127-133.	1.5	43
18	Eu-doped barium strontium silicate phosphor particles prepared from spray solution containing NH4Cl flux by spray pyrolysis. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121, 81-85.	1.7	43

#	Article	IF	Citations
19	Synthesis of mesoporous spherical silica via spray pyrolysis: Pore size control and evaluation of performance in paclitaxel pre-purification. Microporous and Mesoporous Materials, 2013, 165, 219-227.	2.2	42
20	Luminescence enhancement of Eu-doped calcium magnesium silicate blue phosphor for UV-LED application. Journal of Luminescence, 2009, 129, 615-619.	1.5	41
21	Phase control and photocatalytic properties of nano-sized titania particles by gas-phase pyrolysis of TiCl4. Catalysis Communications, 2004, 5, 491-497.	1.6	40
22	Densification and Photoluminescence Improvement of Y[sub 2]O[sub 3] Phosphor Particles Prepared by Spray Pyrolysis. Electrochemical and Solid-State Letters, 2005, 8, H17.	2.2	39
23	Preparation of CaMgSi2O6:Eu blue phosphor particles by spray pyrolysis and its VUV characteristics. Materials Chemistry and Physics, 2006, 98, 330-336.	2.0	38
24	Preparation of solid nickel nanoparticles by large-scale spray pyrolysis of Ni(NO3)2·6H2O precursor: Effect of temperature and nickel acetate on the particle morphology. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2007, 137, 10-19.	1.7	37
25	Improved capacitive deionization of sulfonated carbon/titania hybrid electrode. Electrochimica Acta, 2018, 270, 543-551.	2.6	37
26	Macroporous Fe ₃ O ₄ /Carbon Composite Microspheres with a Short Li ⁺ Diffusion Pathway for the Fast Charge/Discharge of Lithium Ion Batteries. Chemistry - A European Journal, 2014, 20, 11078-11083.	1.7	36
27	Effect of calcination temperature and addition of silica, zirconia, alumina on the photocatalytic activity of titania. Korean Journal of Chemical Engineering, 2001, 18, 879-888.	1.2	34
28	Title is missing!. Journal of Materials Science Letters, 1997, 16, 1848-1849.	0.5	32
29	Phosphor layer formed from the Zn2SiO4:Mn phosphor particles with spherical shape and fine size. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 117, 210-215.	1.7	32
30	Preparation of BaMgAl10O17:Eu blue phosphor by flame-assisted spray pyrolysis: photoluminescence properties of powder and film under VUV excitation. Materials Letters, 2004, 58, 2161-2165.	1.3	29
31	The enhancement of photoluminescence characteristics of Eu-doped barium strontium silicate phosphor particles by co-doping materials. Journal of Alloys and Compounds, 2005, 402, 246-250.	2.8	29
32	Effective energy transfer between Ce3+and Eu2+ in CaAl2Si2O8 host under vacuum ultraviolet illumination. Journal of Luminescence, 2008, 128, 2004-2007.	1.5	29
33	Luminescence Characteristics of Y[sub 3]Al[sub 5â^'2y](Mg,Si)[sub y]O[sub 12]:Ce Phosphor Prepared by Spray Pyrolysis. Journal of the Electrochemical Society, 2010, 157, H1135.	1.3	29
34	The characteristics of nano-sized Gd-doped CeO2 particles prepared by spray pyrolysis. Journal of Alloys and Compounds, 2005, 398, 240-244.	2.8	28
35	Enhancement of light-harvesting efficiency of dye-sensitized solar cells via forming TiO2 composite double layers with down/up converting phosphor dispersion. RSC Advances, 2014, 4, 10039.	1.7	28
36	Preparation of Fine-Sized SrSi[sub 2]O[sub 2-Î]N[sub 2+2/3Î]:Eu[sup 2+] Phosphor by Spray Pyrolysis and its Luminescent Characteristics. Electrochemical and Solid-State Letters, 2008, 11, J64.	2.2	25

#	Article	IF	CITATIONS
37	Co-doping effect of monovalent alkali metals on optical properties of CeO2:Eu nanophosphor prepared by spray pyrolysis and application for preparing pearlescent pigments with red emission. Journal of Luminescence, 2017, 192, 1313-1321.	1.5	25
38	Improved thermal resistance of spherical BaMgAl10O17:Eu blue phosphor prepared by spray pyrolysis. Journal of Luminescence, 2005, 115, 91-96.	1.5	24
39	Neutron Rietveld Analysis for Optimized CaMgSi2O6:Eu2+ and its Luminescent Properties. Journal of Materials Research, 2005, 20, 2061-2066.	1.2	24
40	Luminescence comparison of YAG:Ce phosphors prepared by microwave heating and precipitation methods. Physica B: Condensed Matter, 2010, 405, 1615-1618.	1.3	24
41	Direct electrochemical reduction of titanium dioxide in molten lithium chloride. Journal of Industrial and Engineering Chemistry, 2012, 18, 438-442.	2.9	23
42	DMF effect on the morphology and the luminescence properties of Y2O3:Eu3+ red phosphor prepared by spray pyrolysis. Journal of Industrial and Engineering Chemistry, 2008, 14, 224-229.	2.9	22
43	Preparation of mesoporous V2O5/TiO2 via spray pyrolysis and its application to the catalytic conversion of 1, 2-dichlorobenzene. Journal of Industrial and Engineering Chemistry, 2011, 17, 144-148.	2.9	22
44	Yolkâ€"shell structured Gd ₂ O ₃ :Eu ³⁺ phosphor prepared by spray pyrolysis: the effect of preparation conditions on microstructure and luminescence properties. Physical Chemistry Chemical Physics, 2015, 17, 1325-1331.	1.3	22
45	Preparation and luminescence characterization of fine-sized LaSr2AlO5:Ce phosphor prepared by spray pyrolysis. Journal of Luminescence, 2011, 131, 1487-1491.	1.5	21
46	Preparation of Y ₂ O ₃ Particles by Flame Spray Pyrolysis with Emulsion. Langmuir, 2009, 25, 3402-3406.	1.6	19
47	Luminescence optimization of Eu-doped LnAl3(BO3)4 (Ln=Y, Gd) red phosphor using spray pyrolysis. Journal of Luminescence, 2010, 130, 1970-1974.	1.5	19
48	Improvement of capacitive deionization performance via using a Tiron-grafted TiO2 nanoparticle layer on porous carbon electrode. Korean Journal of Chemical Engineering, 2018, 35, 272-282.	1.2	19
49	Cathodoluminescence characteristics of particles and film of (Y, Zn)2O3:Eu phosphor prepared by spray pyrolysis. Journal of Luminescence, 2007, 127, 391-396.	1.5	18
50	Removal of sulfur dioxide from dibenzothiophene sulfone over Mg-based oxide catalysts prepared by spray pyrolysis. Korean Journal of Chemical Engineering, 2010, 27, 459-464.	1.2	18
51	Luminescence Comparison and Enhancement of Ce-doped Yttrium Aluminum Garnet Phosphor via Cation Substitution and Adding Flux. Journal of the Electrochemical Society, 2011, 158, H697.	1.3	18
52	Evaluation of adsorbents for separation and purification of paclitaxel from plant cell cultures. Process Biochemistry, 2012, 47, 331-334.	1.8	18
53	Two-step spray-drying synthesis of dense and highly luminescent YAG:Ce ³⁺ phosphor powders with spherical shape. RSC Advances, 2015, 5, 8345-8350.	1.7	18
54	An aerosol synthesized CeO ₂ :Eu ³⁺ /Na ⁺ red nanophosphor with enhanced photoluminescence. RSC Advances, 2016, 6, 81203-81210.	1.7	18

#	Article	IF	Citations
55	Red-Emitting Phosphor Particles with Spherical Shape, Dense Morphology, and High Luminescent Efficiency under Ultraviolet. Japanese Journal of Applied Physics, 2004, 43, 5302-5306.	0.8	16
56	Effect of Aluminum Polycation Solution on the Morphology and VUV Characteristics of BaMgAl[sub 10]O[sub 17] Blue Phosphor Prepared by Spray Pyrolysis. Electrochemical and Solid-State Letters, 2003, 6, H27.	2.2	15
57	Catalytic Pyrolysis of Oilsand Bitumen Over Nanoporous Catalysts. Journal of Nanoscience and Nanotechnology, 2011, 11, 759-762.	0.9	15
58	Capacitance Improvement and Electrochemical Characteristics of Silica-Coated Carbon Electrodes for Capacitive Deionization Application. Journal of the Electrochemical Society, 2012, 159, E198-E203.	1.3	15
59	Vacuum Ultraviolet Characteristics of Fine GdPO4:Tb Phosphor Particles With Spherical Shape. Japanese Journal of Applied Physics, 2002, 41, 5590-5593.	0.8	14
60	Large-scale production of fine-sized Zn2SiO4:Mn phosphor microspheres with a dense structure and good photoluminescence properties by a spray-drying process. RSC Advances, 2014, 4, 43606-43611.	1.7	13
61	Size-dependent luminescent properties of hollow and dense BaMgAl10O17: Eu blue phosphor particles prepared by spray pyrolysis. Korean Journal of Chemical Engineering, 2004, 21, 1072-1080.	1.2	12
62	Morphology control and luminescent property of Y3Al5O12:Tb particles prepared by spray pyrolysis. Materials Research Bulletin, 2005, 40, 2212-2218.	2.7	12
63	Fabrication of dense BaMgAl10O17:Eu2+ phosphor particles by spray pyrolysis. Journal of Alloys and Compounds, 2005, 390, 189-193.	2.8	12
64	Luminescence Characteristics of Eu-Doped Calcium Magnesium Chlorosilicate Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2006, 45, 1617-1622.	0.8	12
65	Evaluation of surface area of mesoporous silica adsorbents for separation and purification of paclitaxel. Microporous and Mesoporous Materials, 2013, 180, 109-113.	2.2	12
66	Nanostructured Fe ₂ O ₃ /TiO ₂ composite particles with enhanced NIR reflectance for application to LiDAR detectable cool pigments. RSC Advances, 2021, 11, 16834-16840.	1.7	12
67	Luminescence characteristics and optimization of (La,Gd)Sr2(Al,B)O5:Ce phosphor for white light emitting diodes. Journal of Luminescence, 2012, 132, 1376-1381.	1.5	11
68	Alumina-Precursor Nanoparticles Prepared by Partial Hydrolysis of AlCl ₃ Vapor in Tubular Flow Reactor: Effect of Hydrolysis Conditions on Particle Size Distribution. Industrial & Engineering Chemistry Research, 2014, 53, 10372-10379.	1.8	11
69	Enhanced upconversion luminescence of GdVO4:Er3+/Yb3+ prepared by spray pyrolysis using organic additives. RSC Advances, 2019, 9, 20002-20008.	1.7	11
70	Luminescence Optimization of M[sub 3]MgSi[sub 2]O[sub 8]:Eu[sup 2+] Phosphor by Spray Pyrolysis Combined with Combinatorial Chemistry for UV-LED Application. Journal of the Electrochemical Society, 2009, 156, J129.	1.3	10
71	Influence of Nanopores of MCM-41 and SBA-15 Confining (<i>n</i> -BuCp) ₂ ZrCl ₂ on Copolymerization of Ethylene- <i>α</i> -Olefin. Journal of Nanoscience and Nanotechnology, 2010, 10, 180-185.	0.9	10
72	Synthesis and luminescence characteristics of fine-sized Ba ₃ Si ₆ O ₁₂ N ₂ :Eu green phosphor through spray pyrolysis using TEOS/Si ₃ N ₄ mixed precursors. RSC Advances, 2017, 7, 44759-44765.	1.7	10

#	Article	IF	CITATIONS
73	Aerosol synthesis of TiO ₂ :Er ³⁺ /Yb ³⁺ submicron-sized spherical particles and upconversion optimization for application as anti-counterfeiting materials. RSC Advances, 2020, 10, 16323-16329.	1.7	10
74	Precursor Type Influence on the Morphology and VUV Characteristics of GdPO[sub 4]:Tb Phosphor Particles Prepared by Spray Pyrolysis. Electrochemical and Solid-State Letters, 2002, 5, H31.	2.2	9
75	Effect of Boric Acid Flux and Drying Control Chemical Additive on the Characteristics of Y2O3:Eu Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2006, 45, 9083-9087.	0.8	9
76	Luminescence optimization of MBO3:Eu3+ (M=Y, Gd, Al) red phosphor by spray pyrolysis using combinatorial chemistry. Physica B: Condensed Matter, 2010, 405, 3195-3199.	1.3	9
77	Large-scale production of spherical Y ₂ O ₃ :Eu ³⁺ phosphor powders with narrow size distribution using a two-step spray drying method. RSC Advances, 2014, 4, 62965-62970.	1.7	9
78	Enhancing the light conversion efficiency of dye-sensitized solar cells using nanochannel TiO2 prepared by spray pyrolysis. Electrochimica Acta, 2017, 253, 390-395.	2.6	9
79	Improved porosity and ionic sorption capacity of carbon particles prepared by spray pyrolysis from an aqueous sucrose/NaHCO ₃ /TEOS solution. RSC Advances, 2017, 7, 21314-21322.	1.7	9
80	A new strategy of spray pyrolysis to prepare porous carbon nanosheets with enhanced ionic sorption capacity. RSC Advances, 2016, 6, 1686-1693.	1.7	8
81	Hydrogen separation from the H2/N2 mixture by using a single and multi-stage inorganic membrane. Korean Journal of Chemical Engineering, 1999, 16, 193-201.	1.2	7
82	In-situ investigations of the photoluminescence properties of SiO2/TiO2binary and Boron-SiO2/TiO2ternary oxides prepared by the sol-gel method and their photocatalytic reactivity for the oxidative decomposition of trichloroethylene. International Journal of Photoenergy, 2003, 5, 31-36.	1.4	6
83	Catalytic Pyrolysis of <i>Pinus densiflora</i> Catalysts. Journal of Nanoscience and Nanotechnology, 2018, 18, 6300-6303.	0.9	6
84	Synthesis and characterization of C/Cu core–shell particles by hydrogen-free spray pyrolysis assisted with citric acid and sucrose. Materials Research Bulletin, 2013, 48, 3424-3430.	2.7	5
85	Synthesis and Luminescence Enhancement of Strontium Aluminate Green Phosphor via Spray Pyrolysis. Korean Chemical Engineering Research, 2011, 49, 594-599.	0.2	5
86	Luminescence Characterization of SrAl ₂ O ₄ :Ho ³⁺ Green Phosphor Prepared by Spray Pyrolysis. Korean Chemical Engineering Research, 2015, 53, 620-626.	0.2	5
87	Effect of Precursor Type on Morphology and Vacuum Ultraviolet Characteristics of CaMgSi2O6:Eu Blue Phosphor Particles. Japanese Journal of Applied Physics, 2007, 46, 5809-5812.	0.8	4
88	Synthesis and characterization of NiFe2O4 nanopowders via spray pyrolysis. Journal of the Ceramic Society of Japan, 2009, 117, 1069-1073.	0.5	4
89	Effect of CTAC concentration and Al precursor type on texture properties and microstructure of mesoporous alumina particles prepared by aerosol-assisted self-assembly. Journal of the Ceramic Society of Japan, 2010, 118, 805-809.	0.5	4
90	Enhanced Electrosorption Capacitance of Porous Carbon Particles Synthesized by Spray Pyrolysis. Journal of the Electrochemical Society, 2013, 160, E84-E89.	1.3	4

#	Article	IF	CITATIONS
91	Luminescence improvement of (Ti,Si)O2:Eu3+/Li+ spherical particles for anti-counterfeiting application. Materials Chemistry and Physics, 2021, 267, 124612.	2.0	4
92	Aerosol Synthesis of Gd2O3:Eu/Bi Nanophosphor for Preparation of Photofunctional Pearl Pigment as Security Material. Journal of the Korean Ceramic Society, 2018, 55, 461-472.	1.1	4
93	Effect of calcination temperature and Ti substitution on optical properties of (Fe,Cr) ₂ O ₃ cool black pigment prepared by spray pyrolysis. RSC Advances, 2021, 12, 72-77.	1.7	4
94	Title is missing!. Journal of Materials Science Letters, 2003, 22, 1527-1529.	0.5	3
95	Improved Cathodoluminescence of Y[sub 2]SiO[sub 5]:Ce-BAM:Eu Mixed Blue Phosphor. Electrochemical and Solid-State Letters, 2005, 8, H91.	2.2	3
96	Effects of Y/Gd Ratio and Boron Excess on Vacuum Ultraviolet Characteristics and Morphology of (Y,Gd)BO3:Eu Phosphor Particles Prepared by Spray Pyrolysis. Japanese Journal of Applied Physics, 2007, 46, 3424-3427.	0.8	3
97	Vapor-phase synthesis of a solid precursor for \hat{l}_{\pm} -alumina through a catalytic decomposition of aluminum triisopropoxide. Materials Research Bulletin, 2011, 46, 2199-2203.	2.7	3
98	Effect of urea, NH4OH, and DCCA on texture properties of alumina prepared by ultrasonic spray pyrolysis. Journal of Industrial and Engineering Chemistry, 2012, 18, 344-348.	2.9	3
99	Catalytic properties of mesoporous Al–La–Mn oxides prepared via spray pyrolysis. Materials Research Bulletin, 2016, 82, 76-80.	2.7	3
100	Tuning of thermoelectric transport properties via the formation of hierarchical structures in Biâ€doped <scp> Gd ₂ O ₃ </scp> /Bi _{0.} <scp> ₅ Sb ₁ </scp> . International Journal of Energy Research, 2021, 45, 20921-20933.	2.2	3
101	Preparation of (Y,Gd)3Al5-2y(Si,Mg)yO12:Ce Phosphor by Spray Pyrolysis: Effect of Precursor Type and Flux on Its Luminescence Characteristics. ECS Transactions, 2010, 28, 175-182.	0.3	2
102	Catalytic Conversion of 1,2-Dichlorobenzene Over Mesoporous V2O5/TiO2 Prepared from Spray Pyrolysis. Journal of Nanoscience and Nanotechnology, 2011, 11, 1710-1713.	0.9	2
103	Preparation of Mesoporous Alumina Particles by Spray Pyrolysis and Application to Double Bond Migration of 2-Butene. Journal of Nanoscience and Nanotechnology, 2011, 11, 6312-6317.	0.9	2
104	Aerosol synthesis of macroporous silica adsorbents with high performance in paclitaxel purification from plant cell cultures. Journal of Industrial and Engineering Chemistry, 2014, 20, 3965-3969.	2.9	2
105	Preparation and Luminescence Optimization of CeO ₂ :Er/Yb Phosphor Prepared by Spray Pyrolysis. Applied Chemistry for Engineering, 2015, 26, 319-325.	0.2	2
106	Electro-Deoxidation Behavior of Graphite Oxide in Aqueous Solution. Journal of Chemical Engineering of Japan, 2013, 46, 245-249.	0.3	1
107	Preparation of Nanosized Gd2O3:Eu3+ Red Phosphor Coated on Mica Flake and Its Luminescent Property. Journal of Korean Powder Metallurgy Institute, 2017, 24, 457-463.	0.2	1
108	Effect of Pore Size of Mesoporous Spherical Silica for the Purification of Paclitaxel from Plant Cell Cultures. KSBB Journal, 2013, 28, 208-212.	0.1	1

#	Article	lF	CITATIONS
109	Effect of NH4FFlux on the Characteristics of Barium Strontium Silicate Phosphor Particles. Korean Journal of Materials Research, 2005, 15, 408-412.	0.1	1
110	Effect of Silica-Alumina Adsorbent on the Efficiency of Paclitaxel Purification. Clean Technology, 2013, 19, 342-346.	0.1	1
111	Y2O3:Eu3+ Nanophosphor-Coated Mica or TiO2/Mica as Red-Emitting Pearl Pigment: Coating Factors, Luminescent and Gloss Properties. Applied Sciences (Switzerland), 2021, 11, 4365.	1.3	O
112	Synthesis of \hat{I}_{\pm} -Alumina Nanoparticles Through Partial Hydrolysis of Aluminum Chloride Vapor. Korean Chemical Engineering Research, 2011, 49, 664-668.	0.2	0
113	Improvement of Light-Harvesting Efficiency of TiO ₂ Granules Through Chemical Interconnection of Nanoparticles by Adding TEOT to Spray Solution. Korean Chemical Engineering Research, 2015, 53, 632-637.	0.2	0