Derek P Tittensor

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6965035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How Many Species Are There on Earth and in the Ocean?. PLoS Biology, 2011, 9, e1001127.	2.6	1,970
2	Global patterns and predictors of marine biodiversity across taxa. Nature, 2010, 466, 1098-1101.	13.7	1,131
3	A mid-term analysis of progress toward international biodiversity targets. Science, 2014, 346, 241-244.	6.0	949
4	Deep, diverse and definitely different: unique attributes of the world's largest ecosystem. Biogeosciences, 2010, 7, 2851-2899.	1.3	619
5	Assessing the impacts of 1.5â€Â°C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b). Geoscientific Model Development, 2017, 10, 4321-4345.	1.3	410
6	Global ensemble projections reveal trophic amplification of ocean biomass declines with climate change. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 12907-12912.	3.3	357
7	Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography, 2009, 36, 1111-1128.	1.4	264
8	Global Human Footprint on the Linkage between Biodiversity and Ecosystem Functioning in Reef Fishes. PLoS Biology, 2011, 9, e1000606.	2.6	249
9	Extinctions in ancient and modern seas. Trends in Ecology and Evolution, 2012, 27, 608-617.	4.2	221
10	Deep-sea diversity patterns are shaped by energy availability. Nature, 2016, 533, 393-396.	13.7	202
11	Global habitat suitability of coldâ€water octocorals. Journal of Biogeography, 2012, 39, 1278-1292.	1.4	173
12	Current and Future Patterns of Global Marine Mammal Biodiversity. PLoS ONE, 2011, 6, e19653.	1.1	170
13	State-of-the-art global models underestimate impacts from climate extremes. Nature Communications, 2019, 10, 1005.	5.8	168
14	The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 149-155.	1.2	162
15	Linked sustainability challenges and trade-offs among fisheries, aquaculture and agriculture. Nature Ecology and Evolution, 2017, 1, 1240-1249.	3.4	161
16	Emergent Global Patterns of Ecosystem Structure and Function from a Mechanistic General Ecosystem Model. PLoS Biology, 2014, 12, e1001841.	2.6	159
17	Twentyâ€first entury climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Global Change Biology, 2019, 25, 459-472	4.2	151
18	Energetics of life on the deep seafloor. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109, 15366-15371.	3.3	133

DEREK P TITTENSOR

#	Article	IF	CITATIONS
19	Integrating climate adaptation and biodiversity conservation in the global ocean. Science Advances, 2019, 5, eaay9969.	4.7	133
20	Time to model all life on Earth. Nature, 2013, 493, 295-297.	13.7	130
21	Range contraction in large pelagic predators. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11942-11947.	3.3	127
22	A protocol for the intercomparison of marine fishery and ecosystem models: Fish-MIP v1.0. Geoscientific Model Development, 2018, 11, 1421-1442.	1.3	116
23	Paleontological baselines for evaluating extinction risk in the modern oceans. Science, 2015, 348, 567-570.	6.0	111
24	Seamounts as refugia from ocean acidification for coldâ€water stony corals. Marine Ecology, 2010, 31, 212-225.	0.4	105
25	Unveiling the patterns and trends in 40†years of global trade in CITES-listed wildlife. Biological Conservation, 2018, 223, 47-57.	1.9	105
26	Incorporating climate change adaptation into marine protected area planning. Global Change Biology, 2020, 26, 3251-3267.	4.2	103
27	Effects of temperature on global patterns of tuna and billfish richness. Marine Ecology - Progress Series, 2008, 355, 267-276.	0.9	100
28	Next-generation ensemble projections reveal higher climate risks for marine ecosystems. Nature Climate Change, 2021, 11, 973-981.	8.1	96
29	High connectivity among habitats precludes the relationship between dispersal and range size in tropical reef fishes. Ecography, 2012, 35, 89-96.	2.1	90
30	Metabolic asymmetry and the global diversity of marine predators. Science, 2019, 363, .	6.0	81
31	Present and future biodiversity risks from fossil fuel exploitation. Conservation Letters, 2018, 11, e12448.	2.8	78
32	Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. Biological Reviews, 2017, 92, 199-215.	4.7	76
33	Worldwide distributions of tuna larvae: revisiting hypotheses on environmental requirements for spawning habitats. Marine Ecology - Progress Series, 2014, 501, 207-224.	0.9	74
34	Species–energy relationships in deep-sea molluscs. Biology Letters, 2011, 7, 718-722.	1.0	71
35	Past and future decline of tropical pelagic biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 12891-12896.	3.3	67
36	Human impacts on the species–area relationship in reef fish assemblages. Ecology Letters, 2007, 10, 760-772.	3.0	57

DEREK P TITTENSOR

#	Article	IF	CITATIONS
37	Integrated assessment models for ecologists: the present and the future. Global Ecology and Biogeography, 2014, 23, 124-143.	2.7	52
38	An index to assess the risk to stony corals from bottom trawling on seamounts. Marine Ecology, 2010, 31, 200-211.	0.4	51
39	Acute effects of removing large fish from a near-pristine coral reef. Marine Biology, 2010, 157, 2739-2750.	0.7	50
40	A global map to aid the identification and screening of critical habitat for marine industries. Marine Policy, 2015, 53, 45-53.	1.5	44
41	Advancing Clobal Ecological Modeling Capabilities to Simulate Future Trajectories of Change in Marine Ecosystems. Frontiers in Marine Science, 2020, 7, .	1.2	43
42	Future ocean biomass losses may widen socioeconomic equity gaps. Nature Communications, 2020, 11, 2235.	5.8	43
43	Disentangling diverse responses to climate change among global marine ecosystem models. Progress in Oceanography, 2021, 198, 102659.	1.5	42
44	The environmental niche of the global high seas pelagic longline fleet. Science Advances, 2018, 4, eaat3681.	4.7	38
45	The status of climate change adaptation in fisheries management: Policy, legislation and implementation. Fish and Fisheries, 2021, 22, 1248-1273.	2.7	38
46	Environmental drivers of ophiuroid species richness on seamounts. Marine Ecology, 2010, 31, 26-38.	0.4	36
47	A neutralâ€metabolic theory of latitudinal biodiversity. Global Ecology and Biogeography, 2016, 25, 630-641.	2.7	32
48	Synergistic impacts of habitat loss and fragmentation on model ecosystems. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161027.	1.2	32
49	Integrating modelling of biodiversity composition and ecosystem function. Oikos, 2016, 125, 10-19.	1.2	32
50	Comment on "Can We Name Earth's Species Before They Go Extinct?― Science, 2013, 341, 237-237.	6.0	31
51	Marine extinction risk shaped by trait–environment interactions over 500Âmillion years. Global Change Biology, 2015, 21, 3595-3607.	4.2	31
52	Sufficiency and Suitability of Global Biodiversity Indicators for Monitoring Progress to 2020 Targets. Conservation Letters, 2016, 9, 489-494.	2.8	29
53	Modelling the distribution, sustainability and diapause emergence timing of the copepod Calanus finmarchicus in the Labrador Sea. Fisheries Oceanography, 2003, 12, 299-316.	0.9	28
54	Time Machine Biology: Cross-Timescale Integration of Ecology, Evolution, and Oceanography. Oceanography, 2020, 33, .	0.5	28

DEREK P TITTENSOR

#	Article	IF	CITATIONS
55	Beyond static spatial management: Scientific and legal considerations for dynamic management in the high seas. Marine Policy, 2020, 122, 104102.	1.5	27
56	Evaluating the relationships between the legal and illegal international wildlife trades. Conservation Letters, 2020, 13, e12724.	2.8	23
57	How solitary are white sharks: social interactions or just spatial proximity?. Behavioral Ecology and Sociobiology, 2016, 70, 1735-1744.	0.6	20
58	Differing marine animal biomass shifts under 21st century climate change between Canada's three oceans. Facets, 2020, 5, 105-122.	1.1	20
59	Potential impacts of climate change on agriculture and fisheries production in 72 tropical coastal communities. Nature Communications, 2022, 13, .	5.8	17
60	Non-linear changes in modelled terrestrial ecosystems subjected to perturbations. Scientific Reports, 2020, 10, 14051.	1.6	16
61	Climate-change impacts and fisheries management challenges in the North Atlantic Ocean. Marine Ecology - Progress Series, 2020, 648, 1-17.	0.9	16
62	Inferred support for disturbanceâ€recovery hypothesis of <scp>N</scp> orth <scp>A</scp> tlantic phytoplankton blooms. Journal of Geophysical Research: Oceans, 2015, 120, 7067-7090.	1.0	15
63	Thirty-six years of legal and illegal wildlife trade entering the USA. Oryx, 2021, 55, 432-441.	0.5	13
64	Wealth in the Oceans: Deep sea mining on the horizon?. Environmental Development, 2014, 12, 50-61.	1.8	11
65	Key impacts of climate engineering on biodiversity and ecosystems, with priorities for future research. Journal of Integrative Environmental Sciences, 0, , 1-26.	1.0	11
66	Three Key considerations for biodiversity conservation in multilateral agreements. Conservation Letters, 2021, 14, e12764.	2.8	6
67	A New Approach to Evaluate and Reduce Uncertainty of Model-Based Biodiversity Projections for Conservation Policy Formulation. BioScience, 2021, 71, 1261-1273.	2.2	6
68	Tropicalization of temperate reef fish communities facilitated by urchin grazing and diversity of thermal affinities. Global Ecology and Biogeography, 2022, 31, 995-1005.	2.7	4
69	Temperate hotspots. Nature, 2013, 501, 494-495.	13.7	3
70	Ecosystem vulnerability to ocean warming. Nature, 2015, 528, 43-44.	13.7	3
71	Global Patterns in Marine Biodiversity. , 0, , 501-524.		3
72	The uptake of the biosphere integrity planetary boundary concept into national and international environmental policy. Global Ecology and Conservation, 2020, 22, e01029.	1.0	3

#	Article	IF	CITATIONS
73	Scorecard for the seas. Nature, 2012, 488, 594-595.	13.7	1
74	Elevated species diversity in abyssal gastropods off Newfoundland: the potential role of food supply. Marine Biodiversity, 2011, 41, 537-544.	0.3	0