Iwona Grabowska

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/696481/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Sdfâ€l (CXCL12) improves skeletal muscle regeneration via the mobilisation of Cxcr4 and CD34 expressing cells. Biology of the Cell, 2012, 104, 722-737.	2.0	77
2	SETD3 protein is the actin-specific histidine N-methyltransferase. ELife, 2018, 7, .	6.0	77
3	Comparison of satellite cell-derived myoblasts and C2C12 differentiation in two- and three-dimensional cultures: changes in adhesion protein expression. Cell Biology International, 2011, 35, 125-133.	3.0	48
4	Human and mouse skeletal muscle stem and progenitor cells in health and disease. Seminars in Cell and Developmental Biology, 2020, 104, 93-104.	5.0	48
5	Molecular Mechanism for Cellular Response to β-Escin and Its Therapeutic Implications. PLoS ONE, 2016, 11, e0164365.	2.5	41
6	Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury. Folia Histochemica Et Cytobiologica, 2012, 50, 144-153.	1.5	38
7	Participation of stem cells from human cord blood in skeletal muscle regeneration of SCID mice. Experimental Hematology, 2006, 34, 1261-1269.	0.4	34
8	Cell Cycle Regulation During Proliferation and Differentiation of Mammalian Muscle Precursor Cells. Results and Problems in Cell Differentiation, 2011, 53, 473-527.	0.7	30
9	Morphology and growth of mammalian cells in a liquid/liquid culture system supported with oxygenated perfluorodecalin. Biotechnology Letters, 2013, 35, 1387-1394.	2.2	27
10	Hypoxia preconditioned bone marrow-derived mesenchymal stromal/stem cells enhance myoblast fusion and skeletal muscle regeneration. Stem Cell Research and Therapy, 2021, 12, 448.	5.5	25
11	Liquid perfluorochemical-supported hybrid cell culture system for proliferation of chondrocytes on fibrous polylactide scaffolds. Bioprocess and Biosystems Engineering, 2014, 37, 1707-1715.	3.4	24
12	Restricted Myogenic Potential of Mesenchymal Stromal Cells Isolated from Umbilical Cord. Cell Transplantation, 2012, 21, 1711-1726.	2.5	21
13	Pax3 and Pax7 expression during myoblast differentiation in vitro and fast and slow muscle regeneration in vivo. Cell Biology International, 2009, 33, 483-492.	3.0	19
14	Mouse gastrocnemius muscle regeneration after mechanical or cardiotoxin injury. Folia Histochemica Et Cytobiologica, 2012, 50, 144-53.	1.5	16
15	From Planarians to Mammals - the many faces of regeneration. International Journal of Developmental Biology, 2008, 52, 219-227.	0.6	14
16	Myogenic Potential of Mesenchymal Stem Cells - the Case of Adhesive Fraction of Human Umbilical Cord Blood Cells. Current Stem Cell Research and Therapy, 2013, 8, 82-90.	1.3	14
17	IL-4 and SDF-1 Increase Adipose Tissue-Derived Stromal Cell Ability to Improve Rat Skeletal Muscle Regeneration. International Journal of Molecular Sciences, 2020, 21, 3302.	4.1	14
18	The factors present in regenerating muscles impact bone marrow-derived mesenchymal stromal/stem cell fusion with myoblasts. Stem Cell Research and Therapy, 2019, 10, 343.	5.5	13

Iwona Grabowska

#	Article	IF	CITATIONS
19	Cell cycle regulation of embryonic stem cells and mouse embryonic fibroblasts lacking functional Pax7. Cell Cycle, 2016, 15, 2931-2942.	2.6	12
20	Transient MicroRNA Expression Enhances Myogenic Potential of Mouse Embryonic Stem Cells. Stem Cells, 2018, 36, 655-670.	3.2	12
21	Beneficial Effect of IL-4 and SDF-1 on Myogenic Potential of Mouse and Human Adipose Tissue-Derived Stromal Cells. Cells, 2020, 9, 1479.	4.1	12
22	Myogenic Differentiation of Mouse Embryonic Stem Cells That Lack a Functional Pax7 Gene. Stem Cells and Development, 2016, 25, 285-300.	2.1	11
23	Adipose Tissue-Derived Stromal Cells in Matrigel Impact the Regeneration of Severely Damaged Skeletal Muscles. International Journal of Molecular Sciences, 2019, 20, 3313.	4.1	10
24	Pax7 as molecular switch regulating early and advanced stages of myogenic mouse ESC differentiation in teratomas. Stem Cell Research and Therapy, 2020, 11, 238.	5.5	10
25	Loss of function TRPV6 variants are associated with chronic pancreatitis in nonalcoholic early-onset Polish and German patients. Pancreatology, 2021, 21, 1434-1442.	1.1	10
26	Myogenic potential of mouse embryonic stem cells lacking functional Pax7 tested in vitro by 5-azacitidine treatment and in vivo in regenerating skeletal muscle. European Journal of Cell Biology, 2017, 96, 47-60.	3.6	9
27	Mouse CD146+ muscle interstitial progenitor cells differ from satellite cells and present myogenic potential. Stem Cell Research and Therapy, 2020, 11, 341.	5.5	9
28	Progression of inflammation during immunodeficient mouse skeletal muscle regeneration. Journal of Muscle Research and Cell Motility, 2015, 36, 395-404.	2.0	8
29	Beneficial effects of β-escin on muscle regeneration in rat model of skeletal muscle injury. Phytomedicine, 2021, 93, 153791.	5.3	7
30	Efficient propagation of suspended HL-60 cells in a disposable bioreactor supporting wave-induced agitation at various Reynolds number. Bioprocess and Biosystems Engineering, 2020, 43, 1973-1985.	3.4	6
31	Syndecan-4 distribution during the differentiation of satellite cells isolated from soleus muscle treated by phorbol ester and calphostin C. Cellular and Molecular Biology Letters, 2003, 8, 269-78.	7.0	4
32	Rat Model of Parkes Weber Syndrome. PLoS ONE, 2015, 10, e0133752.	2.5	3
33	Pluripotent and Mesenchymal Stem Cells—Challenging Sources for Derivation of Myoblast. , 2018, , 109-154.		2
34	PAX7 Balances the Cell Cycle Progression via Regulating Expression of Dnmt3b and Apobec2 in Differentiating PSCs. Cells, 2021, 10, 2205.	4.1	1