Thomas Hsiang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6964494/publications.pdf

Version: 2024-02-01

270111 286692 2,453 112 25 43 citations h-index g-index papers 117 117 117 2708 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Ornithine decarboxylase of the fungal pathogen <i>Colletotrichum higginsianum</i> plays an important role in regulating global metabolic pathways and virulence. Environmental Microbiology, 2022, 24, 1093-1116.	1.8	12
2	New Detection Method for Fungal Infection in Silver Fir Seeds. Forests, 2022, 13, 479.	0.9	O
3	The creeping bentgrass microbiome: Traditional culturing and sequencing results compared with metagenomic techniques. Itsrj, 2022, 14, 911-915.	0.1	1
4	Identification and Observation of Infection Processes of <i>Colletotrichum</i> Species Associated with Pearl Plum Anthracnose in Guangxi, China. Plant Disease, 2022, 106, 3154-3165.	0.7	2
5	A secreted fungal effector suppresses rice immunity through host histone hypoacetylation. New Phytologist, 2022, 235, 1977-1994.	3.5	24
6	The Influence of the Provenance and Spatial Structure on the Growth of European Silver Fir (Abies) Tj ETQq0 0 0 831.	rgBT /Ove 0.9	erlock 10 Tf 50 1
7	Identification and Characterization of Calonectria Species Associated with Plant Diseases in Southern China. Journal of Fungi (Basel, Switzerland), 2022, 8, 719.	1.5	8
8	Mitochondrial prohibitin complex regulates fungal virulence via ATG24-assisted mitophagy. Communications Biology, 2022, 5, .	2.0	6
9	First Report of <i>Colletotrichum fructicola</i> Causing Anthracnose on <i>Pouteria campechiana</i> in China. Plant Disease, 2021, 105, 708-708.	0.7	8
10	Selection and screening of fungal endophytes against wheat pathogens. Biological Control, 2021, 154, 104511.	1.4	14
11	Trichoderma asperellum efficiently protects Quercus robur leaves against Erysiphe alphitoides. European Journal of Plant Pathology, 2021, 159, 295-308.	0.8	19
12	Fusarium species associated with leaf spots of mango in China. Microbial Pathogenesis, 2021, 150, 104736.	1.3	14
13	Evolutionary and genomic comparisons of hybrid uninucleate and nonhybrid Rhizoctonia fungi. Communications Biology, 2021, 4, 201.	2.0	16
14	iTRAQ-Based Quantitative Proteomics Reveals <i>ChAcb1</i> as a Novel Virulence Factor in <i>Colletotrichum higginsianum</i> . Phytopathology, 2021, 111, 1571-1582.	1.1	2
15	Insights into genomic evolution from the chromosomal and mitochondrial genomes of Ustilaginoidea virens. Phytopathology Research, 2021, 3, .	0.9	9
16	Litchi Anthracnose Caused by <i>Colletotrichum karstii</i> in Guangxi, China. Plant Disease, 2021, 105, 3295.	0.7	5
17	A Novel Hexose Transporter ChHxt6 Is Required for Hexose Uptake and Virulence in Colletotrichum higginsianum. International Journal of Molecular Sciences, 2021, 22, 5963.	1.8	6
18	Genome-guided investigation of anti-inflammatory sesterterpenoids with 5-15 trans-fused ring system from phytopathogenic fungi. Applied Microbiology and Biotechnology, 2021, 105, 5407-5417.	1.7	6

#	Article	IF	CITATIONS
19	Identification and characterization of <i>Colletotrichum</i> species associated with anthracnose disease of banana. Plant Pathology, 2021, 70, 1827-1837.	1.2	10
20	Dothistroma septosporum Not Detected in Pinus sylvestris Seed Trees from Investigated Stands in Southern Poland. Forests, 2021, 12, 1323.	0.9	2
21	Control of Fusarium head blight using the endophytic fungus, Simplicillium lamellicola, and its effect on the growth of Triticum aestivum. Biological Control, 2021, 160, 104684.	1.4	13
22	Two novel aliphatic unsaturated alcohols isolated from a pathogenic fungus Fusarium proliferatum. Synthetic and Systems Biotechnology, 2021, 6, 446-451.	1.8	3
23	Identification and Characterization of Pestalotioid Fungi Causing Leaf Spots on Mango in Southern China. Plant Disease, 2020, 104, 1207-1213.	0.7	22
24	In vitro antifungal activity of dimethyl trisulfide against Colletotrichum gloeosporioides from mango. World Journal of Microbiology and Biotechnology, 2020, 36, 4.	1.7	17
25	Leaf spot of Polygonatum odoratum caused by Colletotrichum spaethianum. Journal of General Plant Pathology, 2020, 86, 157-161.	0.6	9
26	The strange mitochondrial genomes of Metschnikowia yeasts. Current Biology, 2020, 30, R800-R801.	1.8	5
27	Molecular networking assisted discovery and biosynthesis elucidation of the antimicrobial spiroketals epicospirocins. Chemical Communications, 2020, 56, 10171-10174.	2.2	9
28	Chemical Composition and Attractant Activity of Volatiles from Rhus potaninii to The Spring Aphid Kaburagia rhusicola. Molecules, 2020, 25, 3412.	1.7	2
29	Delineating yeast species with genome average nucleotide identity: a calibration of ANI with haplontic, heterothallic Metschnikowia species. Antonie Van Leeuwenhoek, 2020, 113, 2097-2106.	0.7	27
30	Colletotrichum neorubicola sp. nov., a new leaf anthracnose pathogen of raspberry from northeast China. Mycological Progress, 2020, 19, 947-955.	0.5	3
31	Detection of Fungi and Oomycetes by Volatiles Using E-Nose and SPME-GC/MS Platforms. Molecules, 2020, 25, 5749.	1.7	29
32	Interactions between Phytophthora cactorum, Armillaria gallica and Betula pendula Roth. Seedlings Subjected to Defoliation. Forests, 2020, 11, 1107.	0.9	14
33	Distribution, identification and characterization of Colletotrichum lineola and C. panacicola causing anthracnose on ginseng in northeast China. Crop Protection, 2020, 137, 105265.	1.0	8
34	ChCDC25 Regulates Infection-Related Morphogenesis and Pathogenicity of the Crucifer Anthracnose Fungus Colletotrichum higginsianum. Frontiers in Microbiology, 2020, 11, 763.	1.5	9
35	Genome-based mining of new antimicrobial meroterpenoids from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Applied Microbiology and Biotechnology, 2020, 104, 3835-3846.	1.7	18
36	First molecular detection of Lecanosticta acicola from Poland on Pinus mugo. Forest Pathology, 2020, 50, e12589.	0.5	5

3

#	Article	IF	CITATIONS
37	Health Assessment and Genetic Structure of Monumental Norway Spruce Trees during A Bark Beetle (Ips typographus L.) Outbreak in the BiaÅ,owieÅ1/4a Forest District, Poland. Forests, 2020, 11, 647.	0.9	19
38	Catching speciation in the actâ€"act 2: Metschnikowia lacustris sp. nov., a sister species to Metschnikowia dekortorum. Antonie Van Leeuwenhoek, 2020, 113, 753-762.	0.7	6
39	The yeast community of <i>Conotelus</i> sp. (Coleoptera: Nitidulidae) in Brazilian passionfruit flowers (<scp><i>Passiflora edulis</i></scp>) and description of <i>Metschnikowia amazonensis</i> sp. nov., a largeâ€spored clade yeast. Yeast, 2020, 37, 253-260.	0.8	17
40	Acetyl-coenzyme A synthetase geneChAcs1is essential for lipid metabolism, carbon utilization and virulence of the hemibiotrophic fungusColletotrichum higginsianum. Molecular Plant Pathology, 2019, 20, 107-123.	2.0	15
41	Brocaeloid D, a novel compound isolated from a wheat pathogenic fungus, Microdochium majus 99049. Synthetic and Systems Biotechnology, 2019, 4, 173-179.	1.8	6
42	Antifungal effects of dimethyl trisulfide against Colletotrichum gloeosporioides infection on mango. Journal of Phytopathology, 2019, 167, 445-450.	0.5	5
43	A Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Pectobacterium aroidearum that Causes Soft Rot in Konjac. International Journal of Molecular Sciences, 2019, 20, 1937.	1.8	18
44	Genome- and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134. Applied Microbiology and Biotechnology, 2019, 103, 5167-5181.	1.7	18
45	Colletotrichum species associated with mango in southern China. Scientific Reports, 2019, 9, 18891.	1.6	47
46	Biocontrol potential of a <i>Bacillus subtilis</i> strain BJ-1 against the rice blast fungus <i>Magnaporthe oryzae</i> . Canadian Journal of Plant Pathology, 2019, 41, 47-59.	0.8	43
47	Metschnikowia mating genomics. Antonie Van Leeuwenhoek, 2018, 111, 1935-1953.	0.7	11
48	Identification and Characterization of <i>Colletotrichum</i> Species Associated with Mango Anthracnose in Guangxi, China. Plant Disease, 2018, 102, 1283-1289.	0.7	51
49	A Putative Zn2Cys6 Transcription Factor Is Associated With Isoprothiolane Resistance in Magnaporthe oryzae. Frontiers in Microbiology, 2018, 9, 2608.	1.5	24
50	Colletotrichum higginsianum as a Model for Understanding Host–Pathogen Interactions: A Review. International Journal of Molecular Sciences, 2018, 19, 2142.	1.8	53
51	Pathogenicity Genes in <i>Ustilaginoidea virens</i> Revealed by a Predicted Protein–Protein Interaction Network. Journal of Proteome Research, 2017, 16, 1193-1206.	1.8	22
52	A genomic comparison of putative pathogenicity-related gene families in five members of the Ophiostomatales with different lifestyles. Fungal Biology, 2017, 121, 234-252.	1.1	9
53	Multifaceted Roles of the Ras Guanine-Nucleotide Exchange Factor <i>ChRgf</i> in Development, Pathogenesis, and Stress Responses of <i>Colletotrichum higginsianum</i> Phytopathology, 2017, 107, 433-443.	1.1	21
54	PCR Markers Derived from Comparative Genomics for Detection and Identification of the Rice Pathogen <i>Ustilaginoidea virens</i>	0.7	13

#	Article	IF	CITATIONS
55	Resistance to Dicarboximide Fungicides in a Canadian Population of <i>Microdochium nivale</i> .ltsrj, 2017, 13, 133-138.	0.1	9
56	A Novel MFS Transporter Gene ChMfs1 Is Important for Hyphal Morphology, Conidiation, and Pathogenicity in Colletotrichum higginsianum. Frontiers in Microbiology, 2017, 8, 1953.	1.5	31
57	Draft Genome Sequence of <i>Salmacisia buchloëana</i> (Basidiomycota), Which Induces Hermaphroditism in Dioecious Buffalograss. Genome Announcements, 2017, 5, .	0.8	3
58	Use of Random T-DNA Mutagenesis in Identification of Gene UvPRO1, A Regulator of Conidiation, Stress Response, and Virulence in Ustilaginoidea virens. Frontiers in Microbiology, 2016, 7, 2086.	1.5	57
59	Phylogenetic Analysis of the Synnema-Producing Genus Synnemapestaloides. Journal of Fungi (Basel,) Tj ETQq $1\ 1$	0,784314 1.5	f rgBT /Over
60	A stable phylogeny of the largeâ€spored <i>Metschnikowia</i> clade. Yeast, 2016, 33, 261-275.	0.8	41
61	Ecology and Physiology. , 2016, , 23-53.		2
62	Snow Mold Fungi. , 2016, , 55-94.		0
63	Snow Mold. , 2016, , .		8
64	A HOPS protein, CmVps39, is required for vacuolar morphology, autophagy, growth, conidiogenesis and mycoparasitic functions of <i>Coniothyrium minitans</i> Environmental Microbiology, 2016, 18, 3785-3797.	1.8	19
65	Comparison of different sequencing and assembly strategies for a repeat-rich fungal genome, Ophiocordyceps sinensis. Journal of Microbiological Methods, 2016, 128, 1-6.	0.7	23
66	Differential expression profiling of the early response to Ustilaginoidea virens between false smut resistant and susceptible rice varieties. BMC Genomics, 2015, 16, 955.	1.2	56
67	Chemical management of Volutella leaf and stem blight of boxwood. European Journal of Plant Pathology, 2015, 142, 107-115.	0.8	2
68	Specific adaptation of Ustilaginoidea virens in occupying host florets revealed by comparative and functional genomics. Nature Communications, 2014, 5, 3849.	5.8	202
69	Pseudonectria buxi causing leaf and stem blight on Buxus in Canada. European Journal of Plant Pathology, 2014, 138, 763-773.	0.8	23
70	Comparative bacterial genomics: defining the minimal core genome. Antonie Van Leeuwenhoek, 2013, 103, 385-398.	0.7	14
71	Identification of virulence genes in the crucifer anthracnose fungus Colletotrichum higginsianum by insertional mutagenesis. Microbial Pathogenesis, 2013, 64, 6-17.	1.3	50
72	Multigene differences between <i>Microdochium nivale</i> and <i>Microdochium majus</i> Botany, 2013, 91, 99-106.	0.5	27

#	Article	IF	Citations
73	Genetic structure of a population of Rhizoctonia solani AG 2-2 IIIB from Agrostis stoloniferarevealed by inter-simple sequence repeat (ISSR) markers. Canadian Journal of Plant Pathology, 2013, 35, 476-481.	0.8	6
74	Fusarium wilt of <i>Coleus forskohlii </i> caused by <i> Fusarium oxysporum </i> in China. Canadian Journal of Plant Pathology, 2012, 34, 310-314.	0.8	6
75	Effects of volatile substances of Streptomyces globisporus JK-1 on control of Botrytis cinerea on tomato fruit. Biological Control, 2012, 61, 113-120.	1.4	136
76	A biologist's guide to de novo genome assembly using next-generation sequence data: A test with fungal genomes. Journal of Microbiological Methods, 2011, 86, 368-375.	0.7	33
77	Cold-induced responses in annual bluegrass genotypes with differential resistance to pink snow mold (Microdochium nivale). Plant Science, 2011, 180, 111-119.	1.7	16
78	Suppression of Magnaporthe oryzae by culture filtrates of Streptomyces globisporus JK-1. Biological Control, 2011, 58, 139-148.	1.4	91
79	Effect of SS-toxin, a metabolite of Stemphylium solani, on H+-ATPase activity and standard redox system in plasma membranes from seedlings leaves of garlic (Allium sativum). European Journal of Plant Pathology, 2010, 127, 419-425.	0.8	3
80	Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biology and Technology, 2010, 58, 157-165.	2.9	135
81	Induced systemic resistance against three foliar diseases of <i>Agrostis stolonifera</i> by (2 <i>R</i> ,3 <i>R</i>)â€butanediol or an isoparaffin mixture. Annals of Applied Biology, 2010, 157, 179-189.	1.3	68
82	Isolation, Purification, and Biological Activity of a Phytotoxin Produced by <i>Stemphylium solani</i> Plant Disease, 2010, 94, 1231-1237.	0.7	26
83	Integrated control of garlic leaf blight caused byStemphylium solaniin China. Canadian Journal of Plant Pathology, 2010, 32, 135-145.	0.8	8
84	Genetic Diversity for Pink Snow Mold Resistance in Greensâ€Type Annual Bluegrass. Crop Science, 2009, 49, 589-599.	0.8	16
85	Host range and phytotoxicity of Stemphylium solani, causing leaf blight of garlic (Allium sativum) in China. European Journal of Plant Pathology, 2009, 124, 21-30.	0.8	24
86	Issues in Comparative Fungal Genomics. Applied Mycology and Biotechnology, 2006, , 99-122.	0.3	0
87	Comparison of the Yeast Proteome to Other Fungal Genomes to Find Core Fungal Genes. Journal of Molecular Evolution, 2005, 60, 475-483.	0.8	53
88	Recent progress, developments, and issues in comparative fungal genomics. Canadian Journal of Plant Pathology, 2004, 26, 19-30.	0.8	7
89	Comparative analysis of expressed sequence tags from Malva pusilla, Sorghum bicolor, and Medicago truncatula infected with Colletotrichum species. Plant Science, 2004, 167, 481-489.	1.7	16
90	Distinguishing plant and fungal sequences in ESTs from infected plant tissues. Journal of Microbiological Methods, 2003, 54, 339-351.	0.7	18

#	Article	IF	Citations
91	Colletotrichum gloeosporioides infection induces differential expression of glutathione S-transferase genes in Malva pusilla. Functional Plant Biology, 2003, 30, 821.	1.1	10
92	Population structure and mating-type genes of Colletotrichum graminicola from Agrostis palustris. Canadian Journal of Microbiology, 2002, 48, 427-436.	0.8	30
93	Title is missing!. European Journal of Plant Pathology, 2001, 107, 571-581.	0.8	33
94	Activation of Defense Responses to Fusarium Infection in Asparagus densiflorus. European Journal of Plant Pathology, 2001, 107, 473-483.	0.8	30
95	Clonal and sexual propagation in Botrytis elliptica. Mycological Research, 2001, 105, 833-842.	2.5	18
96	Hemibiotrophic infection and identity of the fungus, Colletotrichum destructivum, causing anthracnose of tobacco. Mycological Research, 2001, 105, 1340-1347.	2.5	40
97	Role of Ice Nucleation and Antifreeze Activities in Pathogenesis and Growth of Snow Molds. Phytopathology, 2000, 90, 354-361.	1.1	69
98	Occurrence of <i>Kabatina juniperi </i> in Ontario and genetic analysis using RAPD markers. Canadian Journal of Plant Pathology, 2000, 22, 79-88.	0.8	4
99	Biology and Management of Typhula Snow Molds of Turfgrass. Plant Disease, 1999, 83, 788-798.	0.7	72
100	Relative virulence of isolates of Sclerotinia homoeocarpa with varying sensitivity to propiconazole. European Journal of Plant Pathology, 1998, 104, 163-169.	0.8	17
101	Genetic diversity of Microdochium nivale isolates from turfgrass. Mycological Research, 1998, 102, 559-567.	2.5	57
102	The mating system of Daedaliopsis confragosa. Mycologia, 1998, 90, 82-84.	0.8	0
103	Estimating benzimidazole residues in thatch and turfgrass by bioassay. Pest Management Science, 1996, 46, 139-143.	0.7	8
104	Effect of a Wetting Agent on Adsorption, Movement and Uptake of Benomyl Applied to Creeping Bentgrass. Journal of Turfgrass Management, 1996, 1, 77-89.	0.1	0
105	Core Cultivation and Efficacy of Benomyl Applied to Creeping Bentgrass. Agronomy Journal, 1995, 87, 272-275.	0.9	6
106	Bioassays for benomyl adsorption and persistence in soil. Soil Biology and Biochemistry, 1994, 26, 317-324.	4.2	25
107	Growth and Virulence of Fungicide-Resistant Isolates of Three Species ofBotrytis. Canadian Journal of Plant Pathology, 1991, 13, 226-231.	0.8	23
108	Physiological specialization of Heterobasidion annosum on conifer hosts. Canadian Journal of Botany, 1989, 67, 2396-2400.	1.2	9

#	Article	IF	CITATIONS
109	Variation in rust virulence and host resistance of Melampsoraon black cottonwood. Canadian Journal of Plant Pathology, 1985, 7, 247-252.	0.8	12
110	Non-conventional fungicides to control dollar spot disease. Itsrj, 0, , .	0.1	0
111	ChSch9 is required for infection-related morphogenesis and pathogenicity in Colletotrichum higginsianum. Canadian Journal of Plant Pathology, 0, , 1-15.	0.8	2
112	Resistance to the DMI fungicide propiconazole in Canadian populations of Microdochium nivale. Itsrj, 0, , .	0.1	1