
Unnikrishnan Nair Saraswathy Hareesh

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/696428/publications.pdf

Version: 2024-02-01

Unnikrishnan Nair

#	Article	IF	CITATIONS
1	Development of tubular substrates, silica based membranes and membrane modules for hydrogen separation at high temperature. Journal of Membrane Science, 2005, 267, 8-17.	8.2	142
2	Graphene Oxide Sheathed ZIF-8 Microcrystals: Engineered Precursors of Nitrogen-Doped Porous Carbon for Efficient Oxygen Reduction Reaction (ORR) Electrocatalysis. ACS Applied Materials & Interfaces, 2016, 8, 29373-29382.	8.0	139
3	Photoregenerable, Bifunctional Granules of Carbon-Doped g-C ₃ N ₄ as Adsorptive Photocatalyst for the Efficient Removal of Tetracycline Antibiotic. ACS Sustainable Chemistry and Engineering, 2017, 5, 1610-1618.	6.7	132
4	Co ₃ O ₄ –C ₃ N ₄ p–n nano-heterojunctions for the simultaneous degradation of a mixture of pollutants under solar irradiation. Environmental Science: Nano, 2017, 4, 212-221.	4.3	127
5	C ₃ N ₄ anchored ZIF 8 composites: photo-regenerable, high capacity sorbents as adsorptive photocatalysts for the effective removal of tetracycline from water. Catalysis Science and Technology, 2017, 7, 2118-2128.	4.1	114
6	Enhanced CO ₂ absorption kinetics in lithium silicate platelets synthesized by a sol–gel approach. Journal of Materials Chemistry A, 2014, 2, 12792.	10.3	87
7	Role of precursors on the photophysical properties of carbon nitride and its application for antibiotic degradation. Environmental Science and Pollution Research, 2017, 24, 8609-8618.	5.3	77
8	Copyrolysed C ₃ N ₄ â€Ag/ZnO Ternary Heterostructure Systems for Enhanced Adsorption and Photocatalytic Degradation of Tetracycline. European Journal of Inorganic Chemistry, 2016, 2016, 5068-5076.	2.0	60
9	A facile one pot synthetic approach for C ₃ N ₄ –ZnS composite interfaces as heterojunctions for sunlight-induced multifunctional photocatalytic applications. RSC Advances, 2016, 6, 17800-17809.	3.6	55
10	Structural and compositional tuning in g-C3N4 based systems for photocatalytic antibiotic degradation. Chemical Engineering Journal Advances, 2021, 8, 100148.	5.2	43
11	CO ₂ Absorption Studies on Mixed Alkali Orthosilicates Containing Rare-Earth Second-Phase Additives. Journal of Physical Chemistry C, 2015, 119, 5319-5326.	3.1	42
12	Morphologically and compositionally tuned lithium silicate nanorods as high-performance carbon dioxide sorbents. Journal of Materials Chemistry A, 2016, 4, 16928-16935.	10.3	42
13	Visible-light-driven photocatalytic properties of binary MoS ₂ /ZnS heterostructured nanojunctions synthesized via one-step hydrothermal route. New Journal of Chemistry, 2017, 41, 3432-3442.	2.8	36
14	Bifacial Dye-Sensitized Solar Cells with Enhanced Light Scattering and Improved Power Conversion Efficiency under Full Sun and Indoor Light Conditions. ACS Applied Energy Materials, 2020, 3, 12584-12595.	5.1	33
15	Antifungal properties of nanosized ZnS particles synthesised by sonochemical precipitation. RSC Advances, 2014, 4, 8439.	3.6	32
16	Germanium-incorporated lithium silicate composites as highly efficient low-temperature sorbents for CO ₂ capture. Journal of Materials Chemistry A, 2018, 6, 7913-7921.	10.3	30
17	Processing of Aluminum Oxynitride Through Aqueous Colloidal Forming Techniques. Journal of the American Ceramic Society, 2010, 93, 429-435.	3.8	28
18	Hydrophobic and Metallophobic Surfaces: Highly Stable Non-wetting Inorganic Surfaces Based on Lanthanum Phosphate Nanorods. Scientific Reports, 2016, 6, 22732.	3.3	28

UNNIKRISHNAN NAIR

#	Article	IF	CITATIONS
19	Fine tuning of compact ZnO blocking layers for enhanced photovoltaic performance in ZnO based DSSCs: a detailed insight using β recombination, EIS, OCVD and IMVS techniques. New Journal of Chemistry, 2017, 41, 1007-1016.	2.8	28
20	Colloidal Shaping of Alumina Ceramics by Thermally Induced Gelation of Methylcellulose. Journal of the American Ceramic Society, 2011, 94, 749-753.	3.8	23
21	Processing of thermally stable 3D hierarchical ZIF-8@ZnO structures and their CO2 adsorption studies. Journal of Environmental Chemical Engineering, 2016, 4, 1442-1450.	6.7	21
22	One-Pot Hydrothermal Synthesis of Visible-Light-Responsive MoS2/g-CNO Heterostructures for Organic-Pollutant Degradation. European Journal of Inorganic Chemistry, 2016, 2016, 3912-3920.	2.0	20
23	An Oriented Nanoporous Membrane Prepared by Pulsed Laser Deposition. Advanced Materials, 2005, 17, 1136-1140.	21.0	19
24	Melamine formaldehyde–metal organic gel interpenetrating polymer network derived intrinsic Fe–N-doped porous graphitic carbon electrocatalysts for oxygen reduction reaction. New Journal of Chemistry, 2018, 42, 18690-18701.	2.8	19
25	Reactive oxygen species (ROS) mediated enhanced anti-candidal activity of ZnS–ZnO nanocomposites with low inhibitory concentrations. RSC Advances, 2015, 5, 76718-76728.	3.6	18
26	Transparent and Hydrophobic MTMS/GPTMS Hybrid Aerogel Monoliths and Coatings by Solâ€Gel Method: A Viable Remedy for Oil‣pill Cleanup. ChemistrySelect, 2018, 3, 2989-2997.	1.5	16
27	Surface modification induced enhanced CO ₂ sorption in cucurbit[6]uril, an organic porous material. Physical Chemistry Chemical Physics, 2017, 19, 25564-25573.	2.8	15
28	ORMOSIL–ZrO ₂ hybrid nanocomposites and coatings on aluminium alloys for corrosion resistance; a sol–gel approach. New Journal of Chemistry, 2018, 42, 10337-10347.	2.8	15
29	Template assisted synthesis of Ni,N co-doped porous carbon from Ni incorporated ZIF-8 frameworks for electrocatalytic oxygen reduction reaction. New Journal of Chemistry, 2020, 44, 12343-12354.	2.8	15
30	A hybrid sol–gel approach for novel photoactive and hydrophobic titania coatings on aluminium metal surfaces. RSC Advances, 2013, 3, 18062.	3.6	14
31	Very low thermal conductivity in lanthanum phosphate–zirconia ceramic nanocomposites processed using a precipitation–peptization synthetic approach. New Journal of Chemistry, 2016, 40, 5333-5337.	2.8	14
32	Chitosan Intercalated Metal Organic Gel as a Green Precursor of Fe Entrenched and Fe Distributed N-Doped Mesoporous Graphitic Carbon for Oxygen Reduction Reaction. ChemistrySelect, 2017, 2, 8762-8770.	1.5	12
33	ZnO hierarchical structures as sacrificial inclusions for enhanced performance under full sun and indoor light in bifacial dye sensitized solar cells. Solar Energy, 2021, 226, 214-224.	6.1	12
34	Photoluminescent, self-cleaning titanium oxide nanocomposites with multifunctional properties. RSC Advances, 2014, 4, 61727-61735.	3.6	10
35	Nanowires of polyaniline festooned silver coated paper electrodes for efficient solid-state symmetrical supercapacitors. RSC Advances, 2018, 8, 33314-33324.	3.6	10
36	Redox participation and plasmonic effects of Ag nanoparticles in nickel cobaltite-Ag architectures as battery type electrodes for hybrid supercapacitor. Electrochimica Acta, 2022, 412, 140141.	5.2	9

UNNIKRISHNAN NAIR

#	Article	IF	CITATIONS
37	Effect of precursor particle size distribution on the morphology and low wetting behavior of photocatalytic nanocoatings on glass surfaces. Journal of Materials Chemistry A, 2013, 1, 12178.	10.3	8
38	Bifunctional lanthanum phosphate substrates as novel adsorbents and biocatalyst supports for perchlorate removal. Journal of Hazardous Materials, 2014, 275, 222-229.	12.4	8
39	Flexible Electrochemical Transducer Platform for Neurotransmitters. ACS Omega, 2018, 3, 3489-3500.	3.5	8
40	Morphological Ensembles of Nâ€Doped Porous Carbon Derived from ZIFâ€8/Feâ€Graphene Nanocomposites: Processing and Electrocatalytic Studies. ChemistrySelect, 2018, 3, 8688-8697.	1.5	8
41	Optical Properties of Rareâ€Earth Doped TiO ₂ Nanocomposites and Coatings; A Solâ€Gel Strategy towards Multi–functionality. ChemistrySelect, 2016, 1, 2140-2147.	1.5	7
42	Morphology control in nickel cobaltite synthesised via solution routes for electrochemical applications. Results in Engineering, 2022, 15, 100536.	5.1	7
43	Temperature assisted acid catalyzed peptization of TiO ₂ ; facile sol–gel approach for thermally stable anatase phase. RSC Advances, 2014, 4, 21664-21671.	3.6	6
44	Energy revamping of solar panels through titania nanocomposite coatings; influence of aqueous silica precursor. RSC Advances, 2016, 6, 31114-31121.	3.6	5
45	Modulating Electrochemical Performance of Interfacially Polymerized, MoS ₂ Decorated Polyaniline Composites for Electrochemical Capacitor Applications. ACS Applied Energy Materials, 2022, 5, 8510-8525.	5.1	5
46	Fe3+ stabilized 3D cross-linked glycine-melamine formaldehyde networks as precursor for highly efficient oxygen reduction catalyst in alkaline media. Materials Letters, 2020, 264, 127365.	2.6	4
47	Lanthanum Phosphate-Incorporated Organosilane Nanocomposites for Gas-Phase CO ₂ Detection. ACS Applied Nano Materials, 2020, 3, 10040-10048.	5.0	1
48	Sol-Gel Lanthanum Phosphate: A Versatile Ceramic Material for Diverse Functional Applications. Advances in Sol-gel Derived Materials and Technologies, 2017, , 285-312.	0.2	1