Sergio Ferrero

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6964130/publications.pdf

Version: 2024-02-01

46 1,112 16 32 papers citations h-index g-index

46 46 46 1496
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Boosting Electric Double Layer Capacitance in Laserâ€Induced Grapheneâ€Based Supercapacitors. Advanced Sustainable Systems, 2022, 6, 2100228.	5.3	58
2	Laserâ€Induced Graphenization of PDMS as Flexible Electrode for Microsupercapacitors. Advanced Materials Interfaces, 2021, 8, 2101046.	3.7	11
3	High-Voltage Temperature Humidity Bias Test (HV-THB): Overview of Current Test Methodologies and Reliability Performances. Electronics (Switzerland), 2020, 9, 1884.	3.1	9
4	Rapid prototyping of 3D Organic Electrochemical Transistors by composite photocurable resin. Scientific Reports, 2020, 10, 13335.	3.3	43
5	Multilayer film passivation for enhanced reliability of power semiconductor devices. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, .	1.2	3
6	3D Printing with the Commercial UV-Curable Standard Blend Resin: Optimized Process Parameters towards the Fabrication of Tiny Functional Parts. Polymers, 2019, 11, 292.	4.5	18
7	A novel highly electrically conductive composite resin for stereolithography. Materials Today Communications, 2019, 19, 12-17.	1.9	58
8	PLA conductive filament for 3D printed smart sensing applications. Rapid Prototyping Journal, 2018, 24, 739-743.	3.2	32
9	3D-printed microfluidics on thin poly(methyl methacrylate) substrates for genetic applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2018, 36, .	1.2	18
10	Back plate electroplating for high aspect ratio processes. Microelectronics International, 2017, 34, 69-74.	0.6	2
11	New insights on laser-induced graphene electrodes for flexible supercapacitors: tunable morphology and physical properties. Nanotechnology, 2017, 28, 174002.	2.6	80
12	<i>In situ</i> MoS ₂ Decoration of Laser-Induced Graphene as Flexible Supercapacitor Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10459-10465.	8.0	228
13	A novel smart caliper foam pig for low-cost pipeline inspectionâ€"Part A: Design and laboratory characterization. Journal of Petroleum Science and Engineering, 2015, 127, 311-317.	4.2	30
14	Production of a thin diamond target by LASER for nuclear reactions inside storage rings. Journal of Radioanalytical and Nuclear Chemistry, 2015, 305, 737-742.	1.5	0
15	A novel smart caliper foam pig for low-cost pipeline inspection – Part B: Field test and data processing. Journal of Petroleum Science and Engineering, 2015, 133, 771-775.	4.2	17
16	SERS active silver nanoparticles synthesized by inkjet printing on mesoporous silicon. Nanoscale Research Letters, 2014, 9, 527.	5.7	40
17	A polymer Lab-on-a-Chip for genetic analysis using the arrayed primer extension on microarray chips. Biomedical Microdevices, 2014, 16, 661-670.	2.8	26
18	Fabrication of microstructures on different materials by diode-pumped solid state laser writing for microfluidics applications. Microsystem Technologies, 2013, 19, 1185-1194.	2.0	1

#	Article	IF	Citations
19	Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique. Thin Solid Films, 2013, 543, 27-31.	1.8	2
20	Series resistance study of Schottky diodes developed on 4H-SiC wafers using a contact of titanium or molybdenum. Microelectronic Engineering, 2013, 106, 43-47.	2.4	11
21	Barrier Inhomogeneities of a Medium Size Mo/4H-SiC Schottky Diode. Materials Science Forum, 2012, 711, 188-192.	0.3	4
22	Fabrication of microstructures on glass by imprinting in conventional furnace for lab-on-chip application. Microelectronic Engineering, 2012, 95, 90-101.	2.4	10
23	Fabrication of large-area microfluidics structures on glass by imprinting and diode-pumped solid state laser writing techniques. Microsystem Technologies, 2011, 17, 1611-1619.	2.0	6
24	Inkjet printing and low power laser annealing of silver nanoparticle traces for the realization of low resistivity lines for flexible electronics. Microelectronic Engineering, 2011, 88, 2481-2483.	2.4	106
25	Fabrication of microstructures on nickel alloy by DPSS laser ablation technique for lab-on-chip applications. , 2010, , .		2
26	Study of the Electrical Characteristics of the CNT/SiC Interface. Materials Science Forum, 2009, 615-617, 231-234.	0.3	0
27	Low temperature electric transport properties in hydrogenated microcrystalline silicon films. Thin Solid Films, 2007, 515, 7629-7633.	1.8	14
28	Silicon–carbon films deposited at low substrate temperature. Journal of Non-Crystalline Solids, 2006, 352, 1371-1375.	3.1	1
29	Deep levels by proton and electron irradiation in 4H–SiC. Journal of Applied Physics, 2005, 98, 053706.	2.5	104
30	Plasma-assisted SiC oxidation for power device fabrication. Applied Surface Science, 2004, 238, 336-340.	6.1	3
31	Properties of a-SiC:H films deposited in high power regime. Thin Solid Films, 2003, 427, 279-283.	1.8	16
32	Low temperature growth of SiO2 on SiC by plasma enhanced chemical vapor deposition for power device applications. Thin Solid Films, 2003, 427, 142-146.	1.8	6
33	Structural and electrical characterization of epitaxial 4H–SiC layers for power electronic device applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2003, 102, 298-303.	3.5	13
34	a-Si:H based two-dimensional photonic crystals. Physica E: Low-Dimensional Systems and Nanostructures, 2003, 16, 539-543.	2.7	4
35	Surface analysis and defect characterization of 4H–SiC wafers for power electronic device applications. Diamond and Related Materials, 2003, 12, 1224-1226.	3.9	10
36	Defect characterization of 4H-SiC wafers for power electronic device applications. Journal of Physics Condensed Matter, 2002, 14, 13397-13402.	1.8	21

SERGIO FERRERO

#	Article	IF	CITATIONS
37	Hydrogenated amorphous silicon carbon alloys for solar cells. Thin Solid Films, 2002, 403-404, 349-353.	1.8	26
38	Optical and structural properties of SiC layers grown by an electron cyclotron resonance CVD technique. Diamond and Related Materials, 2001, 10, 1264-1267.	3.9	5
39	Growth and characterization of SiC layers obtained by microwave-CVD. Thin Solid Films, 2001, 383, 169-171.	1.8	17
40	Large area microcrystalline silicon films grown by ECR-CVD. Thin Solid Films, 2001, 383, 181-184.	1.8	13
41	Study of the optical properties and the density-of-states distribution of hydrogenated amorphous silicon-nitrogen alloy. The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical and Magnetic Properties, 2001, 81, 1951-1962.	0.6	2
42	4H-SiC Schottky Barrier Diodes Using Mo-, Ti- and Ni-Based Contacts. Materials Science Forum, 0, 615-617, 647-650.	0.3	30
43	Barrier Inhomogeneities of Mo Schottky Barrier Diodes on 4H-SiC. Materials Science Forum, 0, 645-648, 227-230.	0.3	O
44	Schottky Contacts to N-Type 4H-SiC Fabricated with Ti-, Mo-, Ni- and Al-Based Metallizations. Materials Science Forum, 0, 679-680, 453-456.	0.3	1
45	Evaluation of Correct Value of Richardson's Constant by Analyzing the Electrical Behavior of Three Different Diodes at Different Temperatures. Materials Science Forum, 0, 711, 174-178.	0.3	6
46	Singleâ€Step 3D Printing of Silverâ€Patterned Polymeric Devices for Bacteria Proliferation Control. Macromolecular Materials and Engineering, 0, , 2100596.	3.6	5