Shigeru Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6963923/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of energy level on the spatial resolution and noise frequency characteristics of virtual monochromatic images: a phantom experiment using four types of CT scanners. Japanese Journal of Radiology, 2021, , 1.	2.4	0
2	Evaluation of Spatial Resolution of Virtual Monochromatic Imaging In Vitro: Effect of Energy Level and Contrast. Journal of Computer Assisted Tomography, 2021, 45, 93-97.	0.9	1
3	New Fast kVp Switching Dual-Energy CT: Reduced Severity of Beam Hardening Artifacts and Improved Image Quality in Reduced-Iodine Virtual Monochromatic Imaging. Academic Radiology, 2020, 27, 1586-1593.	2.5	15
4	Evaluation of three-dimensional iterative image reconstruction in C-arm-based interventional cone-beam CT. Medicine (United States), 2019, 98, e14947.	1.0	2
5	Comparison of full-iodine conventional CT and half-iodine virtual monochromatic imaging: advantages and disadvantages. European Radiology, 2019, 29, 1400-1407.	4.5	14
6	Measurement of Vascular Diameter in Computed Tomography Angiography With Reduced Iodine Load. Journal of Computer Assisted Tomography, 2018, 42, 919-924.	0.9	1
7	Diameter Measurement of Vascular Model on CT Angiography Using Model-Based Iterative Reconstruction: Effect of Tube Current on Accuracy. American Journal of Roentgenology, 2014, 202, 437-442.	2.2	6
8	Initial Performance Evaluation of Iterative Model Reconstruction in Abdominal Computed Tomography. Journal of Computer Assisted Tomography, 2014, 38, 408-414.	0.9	19
9	Vascular Diameter Measurement in CT Angiography: Comparison of Model-Based Iterative Reconstruction and Standard Filtered Back Projection Algorithms In Vitro. American Journal of Roentgenology, 2013, 200, 652-657.	2.2	32
10	Improved Delineation of the Anterior Spinal Artery With Model-Based Iterative Reconstruction in CT Angiography: A Clinical Pilot Study. American Journal of Roentgenology, 2013, 200, 442-446.	2.2	28
11	Adaptive Statistical Iterative Reconstruction Algorithm for Measurement of Vascular Diameter on Computed Tomographic Angiography In Vitro. Journal of Computer Assisted Tomography, 2013, 37, 311-316.	0.9	3
12	Precision and accuracy in CT attenuation measurement of vascular wall using region-of-interest supported by differentiation curve. European Journal of Radiology, 2012, 81, 757-761.	2.6	10
13	MR findings of ruptured endometrial cyst: Comparison with tubo-ovarian abscess. European Journal of Radiology, 2012, 81, 3631-3637.	2.6	12
14	Measurement of vascular wall attenuation: Comparison of CT angiography using model-based iterative reconstruction with standard filtered back-projection algorithm CT in vitro. European Journal of Radiology, 2012, 81, 3348-3353.	2.6	27
15	Evaluation of skin exposure during cerebral CT perfusion studies on a phantom. European Journal of Radiology, 2011, 80, 851-855.	2.6	3
16	Evaluation of Effective Dose During Abdominal Three-Dimensional Imaging for Three Flat-Panel-Detector Angiography Systems. CardioVascular and Interventional Radiology, 2011, 34, 376-382.	2.0	25
17	Effective Dose during Abdominal Three-dimensional Imaging with a Flat-Panel Detector Angiography System. Radiology, 2009, 250, 545-550.	7.3	38
18	Accuracy of Attenuation Measurement of Vascular Wall In Vitro on Computed Tomography Angiography. Investigative Radiology, 2006, 41, 510-515.	6.2	25

#	Article	IF	CITATIONS
19	Accuracy of Automated CT Angiography Measurement of Vascular Diameter in Phantoms: Effect of Size of Display Field of View, Density of Contrast Medium, and Wall Thickness. American Journal of Roentgenology, 2005, 184, 1940-1944.	2.2	12
20	Measurement of Vascular Diameter In Vitro by Automated Software for CT Angiography:Effects of Inner Diameter, Density of Contrast Medium, and Convolution Kernel. American Journal of Roentgenology, 2004, 182, 1313-1317.	2.2	40