Chaosheng Song

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6963467/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Computational Optimization of the Basic Data and Tooth Form Parameters Based on the Contact Strength for Hypoid Gear. Mechanism and Machine Theory, 2022, 169, 104657.	4.5	4
2	The analysis of contact ratio of involute internal beveloid gears with small tooth difference. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2022, 16, JAMDSM0017-JAMDSM0017.	0.7	1
3	Tooth Thickness Error Analysis of Straight Beveloid Gear by Inclined Gear Shaping. International Journal of Precision Engineering and Manufacturing, 2022, 23, 429-443.	2.2	4
4	Effects of machine-tool parameters on geometry and contact pattern for face hobbed hypoid gears. Meccanica, 2022, 57, 1429-1442.	2.0	6
5	Computational study of pitting defect influence on mesh stiffness for straight beveloid gear. Engineering Failure Analysis, 2021, 119, 104971.	4.0	11
6	Numerical study on contact force of paralleled beveloid gears using minimum potential energy theory. Journal of Strain Analysis for Engineering Design, 2021, 56, 249-264.	1.8	4
7	Computerized approach for design and generation of face-milled non-generated hypoid gears with low shaft angle. Mechanism and Machine Theory, 2021, 155, 104084.	4.5	14
8	Computational investigation of off-sized bearing rollers on dynamics for hypoid gear-shaft-bearing coupled system. Mechanism and Machine Theory, 2021, 156, 104177.	4.5	10
9	Computational Studies on Mesh Stiffness of Paralleled Helical Beveloid Gear Pair. International Journal of Precision Engineering and Manufacturing, 2021, 22, 123-137.	2.2	8
10	Computerized determination of the qualified region of main design parameters of face-milled hypoid gears with low shaft angle. Mechanism and Machine Theory, 2021, 159, 104259.	4.5	4
11	Theoretical investigation of sliding ratio on oscillatory roller transmission. Journal of Mechanical Science and Technology, 2021, 35, 3081-3088.	1.5	0
12	Compensation of errors of alignment and contact pattern repositioning in hypoid gears with low crossing shaft angle. Meccanica, 2021, 56, 2861-2875.	2.0	4
13	Mesh Force Modelling and Parametric Studies for Compound Oscillatory Roller Reducer. Chinese Journal of Mechanical Engineering (English Edition), 2021, 34, .	3.7	0
14	Investigation on the influences of comprehensive errors of alignment on the contact characteristic of small-module spiral bevel gear. , 2021, , .		0
15	Influences of rubber cushion and bearing position on the mesh characteristics of small-module spiral bevel gear. Journal of Mechanical Science and Technology, 2021, 35, 5579-5589.	1.5	2
16	Dynamic Analysis of Planetary Gear Transmission System Considering the Flexibility of Internal Ring Gear. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2020, 44, 695-706.	1.3	19
17	Investigation of the effects with linear, circular and polynomial blades on contact characteristics for face-hobbed hypoid gears. Mechanism and Machine Theory, 2020, 146, 103739.	4.5	16
18	Computational investigation of three-faced blade errors on contact behaviors for face-hobbed hypoid gears. Journal of Mechanical Science and Technology, 2020, 34, 2913-2921.	1.5	3

CHAOSHENG SONG

#	Article	IF	CITATIONS
19	Optimal design of wave generator profile for harmonic gear drive using support function. Mechanism and Machine Theory, 2020, 152, 103941.	4.5	28
20	Investigation on contact and bending stress of face-hobbed and face-milled hypoid gear. Mechanism and Machine Theory, 2020, 150, 103873.	4.5	7
21	Investigation of Tool Errors and Their Influences on Tooth Surface Topography for Face-Hobbed Hypoid Gears. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	2.9	21
22	Tooth Surface Modelling and Mesh Behaviors for Paralleled Beveloid Gears. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	2.9	3
23	Dynamic Analysis of Gear–Shaft–Bearing Coupled System Considering Bearing Waviness Defect. Journal of Computational and Nonlinear Dynamics, 2020, 15, .	1.2	3
24	Computational Study on Machine Settings for Face-Milled Hypoid Gears With Low Shaft Angles. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	2.9	1
25	Concave modifications of tooth surfaces of beveloid gears with crossed axes. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233, 1411-1425.	2.1	4
26	Effects of Tooth Modifications on the Mesh and Dynamic Characteristics of Differential Gearbox Used in Electric Vehicle. Iranian Journal of Science and Technology - Transactions of Mechanical Engineering, 2019, 43, 537-549.	1.3	3
27	Impacts of Misalignments on Mesh Behaviors of Face-Hobbed Hypoid Gear Considering System Deformation. IEEE Access, 2019, 7, 79244-79253.	4.2	9
28	Dynamic Response Analysis for NW Planetary Gear Transmission Used in Electric Wheel Hub. IEEE Access, 2019, 7, 111879-111889.	4.2	4
29	Effects of Flexibility and Suspension Configuration of Main Shaft on Dynamic Characteristics of Wind Turbine Drivetrain. Chinese Journal of Mechanical Engineering (English Edition), 2019, 32, .	3.7	7
30	Investigation of dynamic characteristics of planetary gear stage in wind turbine considering voltage dip. Journal of Mechanical Science and Technology, 2019, 33, 4139-4154.	1.5	3
31	Dynamic modeling and analysis of wind turbine drivetrain considering platform motion. Mechanism and Machine Theory, 2019, 140, 781-808.	4.5	18
32	Study on the dynamic modeling and natural characteristics of wind turbine drivetrain considering electromagnetic stiffness. Mechanism and Machine Theory, 2019, 134, 541-561.	4.5	23
33	Improvement of reliability and wind power generation based on wind turbine real-time condition assessment. International Journal of Electrical Power and Energy Systems, 2019, 113, 344-354.	5.5	44
34	Investigation on the influence of work holding equipment errors on contact characteristics of face-hobbed hypoid gear. Mechanism and Machine Theory, 2019, 138, 95-111.	4.5	64
35	Concave and convex modifications analysis for skewed beveloid gears considering misalignments. Mechanism and Machine Theory, 2019, 133, 127-149.	4.5	18
36	Effects of rack-cutter parabolic modification on loaded contact characteristics for crossed beveloid gears with misalignments. International Journal of Mechanical Sciences, 2018, 141, 359-371.	6.7	17

#	Article	IF	CITATIONS
37	Loaded tooth contact analysis of intersected beveloid and cylindrical involute gear pair with small shaft angle. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2018, 12, JAMDSM0004-JAMDSM0004.	0.7	7
38	Influence of lubrication starvation and surface waviness on the oil film stiffness of elastohydrodynamic lubrication line contact. JVC/Journal of Vibration and Control, 2018, 24, 924-936.	2.6	14
39	Effects of tooth modifications on mesh characteristics of crossed beveloid gear pair with small shaft angle. Mechanism and Machine Theory, 2018, 119, 142-160.	4.5	19
40	A numerical study on the contact fatigue life of a coated gear pair under EHL. Industrial Lubrication and Tribology, 2018, 70, 23-32.	1.3	13
41	Modeling and analysis of mesh stiffness for straight beveloid gear with parallel axes based on potential energy method. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2018, 12, JAMDSM0122-JAMDSM0122.	0.7	8
42	Effects of macro-parameters on vibration and radiation noise for high speed wheel gear transmission in electric vehicles. Journal of Mechanical Science and Technology, 2018, 32, 4153-4164.	1.5	13
43	Tooth surface deviation and mesh analysis of beveloid gears with parallel axis considering machine tool adjustment errors. Journal of Advanced Mechanical Design, Systems and Manufacturing, 2018, 12, JAMDSM0082-JAMDSM0082.	0.7	2
44	Manufacturing and contact characteristics analysis of internal straight beveloid gear pair. Mechanism and Machine Theory, 2017, 114, 60-73.	4.5	13
45	Tooth contact analysis of crossed beveloid gear transmission with parabolic modification. Mechanism and Machine Theory, 2017, 113, 40-52.	4.5	26
46	Effects of elastic support on the dynamic behaviors of the wind turbine drive train. Frontiers of Mechanical Engineering, 2017, 12, 348-356.	4.3	15
47	Effects of Geometry Design Parameters on the Static Strength and Dynamics for Spiral Bevel Gear. International Journal of Rotating Machinery, 2017, 2017, 1-8.	0.8	6
48	Coefficient of friction of a starved lubricated spur gear pair. Journal of Mechanical Science and Technology, 2016, 30, 2171-2177.	1.5	13
49	Lubrication film stiffness of a spur gear pair. , 2016, , 981-986.		2
50	Tribological evaluation of a coated spur gear pair. Tribology International, 2016, 99, 117-126.	5.9	38
51	Influences of carrier assembly errors on the dynamic characteristics for wind turbine gearbox. Mechanism and Machine Theory, 2016, 103, 138-147.	4.5	31
52	Study on Starved Lubrication Performance of a Cycloid Drive. Tribology Transactions, 2016, 59, 1005-1015.	2.0	10
53	Starved lubrication of a spur gear pair. Tribology International, 2016, 94, 52-60.	5.9	65
54	Effect of the Shape of Inlet Oil-Supply Layer on Starved Lubrication Performance of a Cycloid Drive. ,		0

2015, , .

CHAOSHENG SONG

#	ARTICLE	IF	CITATIONS
55	Dynamic analysis of a megawatt wind turbine drive train. Journal of Mechanical Science and Technology, 2015, 29, 1913-1919.	1.5	30
56	Effect of tooth profile modification on lubrication performance of a cycloid drive. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2015, 229, 785-794.	1.8	16
57	Dynamic analysis and experimental study of a marine gearbox with crossed beveloid gears. Mechanism and Machine Theory, 2015, 92, 17-28.	4.5	13
58	Dynamic modeling and analysis for transmission system of high-power wind turbine gearbox. Journal of Mechanical Science and Technology, 2015, 29, 4073-4082.	1.5	27
59	Pitch cone design and tooth contact analysis of intersected beveloid gears for marine transmission. Mechanism and Machine Theory, 2014, 82, 141-153.	4.5	13
60	Sliding friction effect on dynamics of crossed beveloid gears with small shaft angle. Journal of Mechanical Science and Technology, 2013, 27, 1255-1263.	1.5	6
61	Pitch cone design and influence of misalignments on tooth contact behaviors of crossed beveloid gears. Mechanism and Machine Theory, 2013, 59, 48-64.	4.5	26
62	Coupled Tooth Contact Analysis of Intersected Beveloid Gears for Marine Transmissions. , 2013, , .		0
63	Parametric Analysis of Gear Mesh and Dynamic Response of Loaded Helical Beveloid Transmission With Small Shaft Angle. Journal of Mechanical Design, Transactions of the ASME, 2012, 134, .	2.9	20
64	Geometry design and tooth contact analysis of crossed beveloid gears for marine transmissions. Chinese Journal of Mechanical Engineering (English Edition), 2012, 25, 328-337.	3.7	22
65	Effects of Assembly Errors on Crossed Beveloid Gear Tooth Contact and Dynamic Response. , 2011, , .		5
66	Computational Tooth Root Stress Analysis of Crossed Beveloid Gears with Small Shaft Angle. Applied Mechanics and Materials, 0, 86, 188-191.	0.2	10