Hongmei Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6963328/publications.pdf

Version: 2024-02-01

93 papers

5,515 citations

35 h-index 79698 **73** g-index

96 all docs 96
docs citations

96 times ranked 9992 citing authors

#	Article	IF	CITATIONS
1	Bio-crude oil production and valorization of hydrochar as anode material from hydrothermal liquefaction of algae grown on brackish dairy wastewater. Fuel Processing Technology, 2022, 227, 107119.	7.2	11
2	A Generalized Synthesis Strategy for Binderless, Free-Standing Anode for Lithium/Sodium Ion Battery Comprised of Metal Selenides@Carbon Nanofibers. ACS Applied Energy Materials, 2022, 5, 842-851.	5.1	6
3	An Unbalanced Battle in Excellence: Revealing Effect of Ni/Co Occupancy on Water Splitting and Oxygen Reduction Reactions in Tripleâ€Conducting Oxides for Protonic Ceramic Electrochemical Cells. Small, 2022, 18, .	10.0	16
4	Exploring spent biomass-derived adsorbents as anodes for lithium ion batteries. Materials Today Energy, 2021, 19, 100580.	4.7	10
5	Waste-to-wealth application of wastewater treatment algae-derived hydrochar for Pb(II) adsorption. MethodsX, 2021, 8, 101263.	1.6	9
6	Carbon Nanotube Supported Amorphous MoS ₂ via Microwave Heating Synthesis for Enhanced Performance of Hydrogen Evolution Reaction. Energy Material Advances, 2021, 2021, .	11.0	20
7	Understanding Degradation at the Lithium-Ion Battery Cathode/Electrolyte Interface: Connecting Transition-Metal Dissolution Mechanisms to Electrolyte Composition. ACS Applied Materials & Samp; Interfaces, 2021, 13, 11930-11939.	8.0	31
8	Simultaneous recovery of ammonium, potassium and magnesium from produced water by struvite precipitation. Chemical Engineering Journal, 2020, 382, 123001.	12.7	86
9	Bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Materials Science, 2020, 2, 264-280.	8.8	35
10	Carrier Density Modulation in PbSe Quantum Dot Films via In-Solution Ligand Exchange. MRS Advances, 2020, 5, 2091-2099.	0.9	2
11	Cation Deficiency Tuning of LaCoO ₃ Perovskite as Bifunctional Oxygen Electrocatalyst. ChemCatChem, 2020, 12, 2768-2775.	3.7	51
12	MOF-derived ultrasmall CoSe ₂ nanoparticles encapsulated by an N-doped carbon matrix and their superior lithium/sodium storage properties. Chemical Communications, 2020, 56, 9218-9221.	4.1	24
13	Enhancing the Electrocatalysis of LiNi _{0.5} 0.5by Introducing Lithium Deficiency for Oxygen Evolution Reaction. ACS Applied Materials & Sp. 1019; Interfaces, 2020, 12, 10496-10502.	8.0	33
14	Biexcitons in 2D (iso-BA) < sub>2 < /sub>Pbl < sub>4 < /sub> perovskite crystals. Nanophotonics, 2020, 9, 2001-2006.	6.0	19
15	PbE (E = S, Se) Colloidal Quantum Dot-Layered 2D Material Hybrid Photodetectors. Nanomaterials, 2020, 10, 172.	4.1	29
16	Advanced Nanomaterials and Nanotechnologies for Solar Energy. International Journal of Photoenergy, 2019, 2019, 1-2.	2.5	6
17	A ternary Ag–TiO ₂ /reduced graphene oxide nanocomposite as the anode material for lithium ion batteries. Inorganic Chemistry Frontiers, 2019, 6, 2126-2134.	6.0	10
18	Synergistic Effect on the Improved Electrochemical Performance in the Case of Fe _{1â€"<i>x</i>} Cd _{<i>x</i>} CO ₃ . Journal of Physical Chemistry C, 2019, 123, 19333-19339.	3.1	5

#	Article	IF	Citations
19	Brightening upconverting nanocrystals using laser-induced surface reconstruction. Materials Today Nano, 2019, 8, 100055.	4.6	3
20	Surface depletion field in 2D perovskite microplates: Structural phase transition, quantum confinement and Stark effect. Nano Research, 2019, 12, 2858-2865.	10.4	11
21	High-Performance Photodetectors Based on Lead-Free 2D Ruddlesden–Popper Perovskite/MoS ₂ Heterostructures. ACS Applied Materials & Interfaces, 2019, 11, 8419-8427.	8.0	114
22	Enhancing the Cooperative Catalytic Effect in Ni/Co Hydr(oxy)oxide Porous Electrodes for Overall Water Splitting and Glucose Sensing. ACS Sustainable Chemistry and Engineering, 2019, 7, 11303-11312.	6.7	23
23	Perovskite oxides as bifunctional oxygen electrocatalysts for oxygen evolution/reduction reactions – A mini review. Applied Materials Today, 2019, 16, 56-71.	4.3	122
24	Temperature-Dependent Band Gap in Two-Dimensional Perovskites: Thermal Expansion Interaction and Electron–Phonon Interaction. Journal of Physical Chemistry Letters, 2019, 10, 2546-2553.	4.6	90
25	A-site Excessive (La _{0.8} Sr _{0.2}) _{1+<i>>x</i>} MnO ₃ Perovskite Oxides for Bifunctional Oxygen Catalyst in Alkaline Media. ACS Catalysis, 2019, 9, 5074-5083.	11.2	84
26	IrO ₂ -incorporated La _{0.8} Sr _{0.2} MnO ₃ as a bifunctional oxygen electrocatalyst with enhanced activities. Inorganic Chemistry Frontiers, 2019, 6, 1029-1039.	6.0	23
27	Recent progress of the optoelectronic properties of 2D Ruddlesden-Popper perovskites. Journal of Semiconductors, 2019, 40, 041901.	3.7	17
28	Hierarchical Ni(HCO ₃) ₂ Nanosheets Anchored on Carbon Nanofibers as Binderâ€Free Anodes for Lithiumâ€Ion Batteries. Energy Technology, 2019, 7, 1900094.	3.8	10
29	Lithium storage mechanisms of CdSe nanoparticles with carbon modification for advanced lithium ion batteries. Chemical Communications, 2019, 55, 2996-2999.	4.1	23
30	Two-Dimensional Lead-Free Perovskite (C ₆ H ₅ C ₂ H ₃) ₂ CsSn _{2<, with High Hole Mobility. Journal of Physical Chemistry Letters, 2019, 10, 7-12.}	su b xd <sub< td=""><td>> 73√/sub></td></sub<>	> 73 √/sub>
31	Polymer-assisted approach to LaCo1-xNixO3 network nanostructures as bifunctional oxygen electrocatalysts. Electrochimica Acta, 2019, 296, 945-953.	5.2	77
32	Vaporâ€Phase Growth of CsPbBr ₃ Microstructures for Highly Efficient Pure Green Light Emission. Advanced Optical Materials, 2019, 7, 1801336.	7.3	30
33	Engineering Molybdenum Diselenide and Its Reduced Graphene Oxide Hybrids for Efficient Electrocatalytic Hydrogen Evolution. ACS Applied Nano Materials, 2018, 1, 2143-2152.	5.0	22
34	Direct Identification of Surface Defects and Their Influence on the Optical Characteristics of Upconversion Nanoparticles. ACS Nano, 2018, 12, 3623-3628.	14.6	86
35	Polymer-assisted chemical solution synthesis of La0.8Sr0.2MnO3-based perovskite with A-site deficiency and cobalt-doping for bifunctional oxygen catalyst in alkaline media. Electrochimica Acta, 2018, 273, 80-87.	5.2	45
36	Electric-Field-Induced Dynamic Electronic Junctions in Hybrid Organic–Inorganic Perovskites for Optoelectronic Applications. ACS Omega, 2018, 3, 1445-1450.	3.5	21

#	Article	IF	CITATIONS
37	Fabrication of single phase 2D homologous perovskite microplates by mechanical exfoliation. 2D Materials, 2018, 5, 021001.	4.4	65
38	Controllable growth of two-dimensional perovskite microstructures. CrystEngComm, 2018, 20, 6538-6545.	2.6	14
39	Two-Step Growth of 2D Organic–Inorganic Perovskite Microplates and Arrays for Functional Optoelectronics. Journal of Physical Chemistry Letters, 2018, 9, 4532-4538.	4.6	31
40	Electrodes with High Conductivities for High Performance Lithium/Sodium Ion Batteries. Engineered Science, 2018, , .	2.3	27
41	MOF-derived multifractal porous carbon with ultrahigh lithium-ion storage performance. Scientific Reports, 2017, 7, 40574.	3.3	36
42	Ultrafine TiO2 nanoparticles on reduced graphene oxide as anode materials for lithium ion batteries. Applied Materials Today, 2017, 8, 31-34.	4.3	43
43	Phase-Transfer Ligand Exchange of Lead Chalcogenide Quantum Dots for Direct Deposition of Thick, Highly Conductive Films. Journal of the American Chemical Society, 2017, 139, 6644-6653.	13.7	112
44	Self-Substitution and the Temperature Effects on the Electrochemical Performance in the High Voltage Cathode System LiMn1.5+xNi0.5 \hat{a} °xO4 (x \hat{a} €%= \hat{a} €%0.1). Journal of Electrochemical Energy Conversion and Storage, 2017, 14, .	2.1	0
45	Polymer-assisted deposition of SrTiO3 film as cathode buffer layer in inverted polymer solar cells. Applied Materials Today, 2017, 9, 402-406.	4.3	9
46	Niobium-doped titanium dioxide on a functionalized carbon supported palladium catalyst for enhanced ethanol electro-oxidation. RSC Advances, 2017, 7, 34618-34623.	3.6	9
47	La _{0.8} Sr _{0.2} MnO ₃ -Based Perovskite Nanoparticles with the A-Site Deficiency as High Performance Bifunctional Oxygen Catalyst in Alkaline Solution. ACS Applied Materials & Samp; Interfaces, 2017, 9, 23820-23827.	8.0	87
48	Nanoscale Engineering of Heterostructured Anode Materials for Boosting Lithiumâ€lon Storage. Advanced Materials, 2016, 28, 7580-7602.	21.0	224
49	Photocatalytic Treatment of Desalination Concentrate Using Optical Fibers Coated With Nanostructured Thin Films: Impact of Water Chemistry and Seasonal Climate Variations. Photochemistry and Photobiology, 2016, 92, 379-387.	2.5	16
50	Controllable Fabrication and Optical Properties of Uniform Gadolinium Oxysulfate Hollow Spheres. Scientific Reports, 2016, 5, 17934.	3.3	22
51	Recent advances in nanostructured Nb-based oxides for electrochemical energy storage. Nanoscale, 2016, 8, 8443-8465.	5.6	172
52	Facile synthesis of hierarchical MoS ₂ â€"carbon microspheres as a robust anode for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 9653-9660.	10.3	73
53	Ultrafine Nb ₂ O ₅ Nanocrystal Coating on Reduced Graphene Oxide as Anode Material for High Performance Sodium Ion Battery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 22213-22219.	8.0	108
54	Enhancement of Low-field Magnetoresistance in Self-Assembled Epitaxial La0.67Ca0.33MnO3:NiO and La0.67Ca0.33MnO3:Co3O4 Composite Films via Polymer-Assisted Deposition. Scientific Reports, 2016, 6, 26390.	3.3	16

#	Article	IF	Citations
55	Unprecedented performance of N-doped activated hydrothermal carbon towards C <sub>2< sub>H<sub>6< sub> CH<sub>4< sub>, CO<sub>2< sub> CH<sub>4< sub>, and CO<sub>2< sub> H<sub>2< sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub>2< sub> H<sub> H<sub>2< sub> H<sub> H<sub< td=""><td>10.3</td><td>70</td></sub<></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub></sub>	10.3	70
56	Catalyst Nanomaterials. Journal of Nanomaterials, 2015, 2015, 1-2.	2.7	1
57	A new chemosensor for Ga ³⁺ detection by fluorescent nitrogen-doped graphitic carbon dots. RSC Advances, 2015, 5, 13036-13041.	3.6	20
58	Porous TiO2 Conformal Coating on Carbon Nanotubes as Energy Storage Materials. Electrochimica Acta, 2015, 169, 73-81.	5.2	49
59	Titanium Oxynitride Nanoparticles Anchored on Carbon Nanotubes as Energy Storage Materials. ACS Applied Materials & Energy Storage Materials.	8.0	35
60	Aqueous Solution-Deposited Molybdenum Oxide Films as an Anode Interfacial Layer for Organic Solar Cells. ACS Applied Materials & Dr. Interfaces, 2015, 7, 18218-18224.	8.0	26
61	Functional Nanomaterials for Optoelectric Conversion and Energy Storage 2014. Journal of Nanomaterials, 2014, 2014, 1-2.	2.7	2
62	Microwave-assisted synthesis of hybrid CoxNi1 \hat{a} °x(OH)2 nanosheets: Tuning the composition for high performance supercapacitor. Journal of Power Sources, 2014, 251, 338-343.	7.8	101
63	Facile chemical solution deposition of nanocrystalline CrN thin films with low magnetoresistance. RSC Advances, 2014, 4, 12568-12571.	3.6	14
64	Solvothermal route based in situ carbonization to Fe3O4@C as anode material for lithium ion battery. Nano Energy, 2014, 8, 126-132.	16.0	57
65	Direct growth of mesoporous anatase TiO ₂ on nickel foam by soft template method as binder-free anode for lithium-ion batteries. RSC Advances, 2014, 4, 48938-48942.	3.6	13
66	Enhanced carrier multiplication in engineered quasi-type-II quantum dots. Nature Communications, 2014, 5, 4148.	12.8	143
67	Hollow spherical rare-earth-doped yttrium oxysulfate: A novel structure for upconversion. Nano Research, 2014, 7, 1093-1102.	10.4	42
68	A novel solvent-free thermal reaction of ferrocene and sulfur for one-step synthesis of iron sulfide and carbon nanocomposites and their electrochemical performance. Journal of Power Sources, 2014, 265, 1-5.	7.8	31
69	A facile hydrothermal route to iron(III) oxide with conductive additives as composite anode for lithium ion batteries. Journal of Power Sources, 2014, 259, 227-232.	7.8	33
70	Nickel substituted LiMn2O4 cathode with durable high-rate capability for Li-ion batteries. RSC Advances, 2013, 3, 18441.	3.6	33
71	Controlling morphology and enhancing electrochemical performance of cobalt oxide by addition of graphite. Materials Letters, 2013, 98, 59-62.	2.6	18
72	Bismuth oxide: a new lithium-ion battery anode. Journal of Materials Chemistry A, 2013, 1, 12123.	10.3	132

#	Article	IF	Citations
73	A facile microwave-assisted route to Co(OH)2 and Co3O4 nanosheet for Li-ion battery. Journal of Alloys and Compounds, 2013, 578, 349-354.	5. 5	41
74	Preparation of porous SnO2 helical nanotubes and SnO2 sheets. Materials Chemistry and Physics, 2013, 140, 249-254.	4.0	13
75	A general polymer-assisted solution approach to grow transition metal oxide nanostructures directly on nickel foam as anodes for Li-ion batteries. Journal of Power Sources, 2013, 242, 604-609.	7.8	17
76	Reduced Graphene Oxide Wrapped FeS Nanocomposite for Lithium-Ion Battery Anode with Improved Performance. ACS Applied Materials & Interfaces, 2013, 5, 5330-5335.	8.0	199
77	SBA-15 confined synthesis of TiNb2O7 nanoparticles for lithium-ion batteries. Nanoscale, 2013, 5, 11102.	5.6	119
78	Nanocomposites 2013. Journal of Nanotechnology, 2013, 2013, 1-1.	3.4	0
79	Functional Nanomaterials for Optoelectric Conversion and Energy Storage. Journal of Nanomaterials, 2013, 2013, 1-2.	2.7	1,394
80	Dielectric function of LaAlO3 from 0.8 to 6 eV between 77 and 700 K. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2012, 30, .	2.1	30
81	Structure and magnetotransport properties of epitaxial nanocomposite La0.67Ca0.33MnO3:SrTiO3 thin films grown by a chemical solution approach. Applied Physics Letters, 2012, 100, 082403.	3.3	19
82	High Capacity MoO ₂ /Graphite Oxide Composite Anode for Lithium-Ion Batteries. Journal of Physical Chemistry Letters, 2012, 3, 309-314.	4.6	151
83	Preparation of Mesoporous Silica-Supported Palladium Catalysts for Biofuel Upgrade. Journal of Nanotechnology, 2012, 2012, 1-6.	3.4	6
84	Nanocomposites 2012. Journal of Nanotechnology, 2012, 2012, 1-2.	3.4	0
85	Polymer-assisted chemical solution approach to YVO4:Eu nanoparticle networks. Journal of Materials Chemistry, 2012, 22, 5835.	6.7	21
86	Microstructural and magnetic properties of (La0.7Sr0.3MnO3)0.7:(Mn3O4)0.3 nanocomposite thin films. Journal of Applied Physics, 2011, 109, .	2.5	44
87	Nanocomposites. Journal of Nanotechnology, 2011, 2011, 1-2.	3.4	5
88	Surfactant-Templated Mesoporous Metal Oxide Nanowires. Journal of Nanomaterials, 2010, 2010, 1-6.	2.7	12
89	Highly Conductive Films of Layered Ternary Transitionâ€Metal Nitrides. Angewandte Chemie - International Edition, 2009, 48, 1490-1493.	13.8	26
90	Epitaxial Ternary Nitride Thin Films Prepared by a Chemical Solution Method. Journal of the American Chemical Society, 2008, 130, 15224-15225.	13.7	26

Hongmei Luo

#	Article	IF	CITATIONS
91	Structural and Photoelectrochemical Properties of BiVO ₄ Thin Films. Journal of Physical Chemistry C, 2008, 112, 6099-6102.	3.1	144
92	Self-Assembled Epitaxial Nanocomposite BaTiO3â^'NiFe2O4Films Prepared by Polymer-Assisted Deposition. Journal of the American Chemical Society, 2007, 129, 14132-14133.	13.7	54
93	Optical and Structural Properties of Single Phase Epitaxial pâ€Type Transparent Oxide Thin Films. Advanced Materials, 2007, 19, 3604-3607.	21.0	64