Christine Ogilvie Hendren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6963272/publications.pdf Version: 2024-02-01

471509 414414 33 1,748 17 32 citations h-index g-index papers 34 34 34 2965 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Estimating Production Data for Five Engineered Nanomaterials As a Basis for Exposure Assessment. Environmental Science & Technology, 2011, 45, 2562-2569.	10.0	350
2	Guidance to improve the scientific value of zeta-potential measurements in nanoEHS. Environmental Science: Nano, 2016, 3, 953-965.	4.3	258
3	Nanotechnology for sustainable food production: promising opportunities and scientific challenges. Environmental Science: Nano, 2017, 4, 767-781.	4.3	202
4	Nanomaterial Categorization for Assessing Risk Potential To Facilitate Regulatory Decision-Making. ACS Nano, 2015, 9, 3409-3417.	14.6	129
5	Modeling nanomaterial fate in wastewater treatment: Monte Carlo simulation of silver nanoparticles (nano-Ag). Science of the Total Environment, 2013, 449, 418-425.	8.0	112
6	How should the completeness and quality of curated nanomaterial data be evaluated?. Nanoscale, 2016, 8, 9919-9943.	5.6	86
7	A functional assay-based strategy for nanomaterial risk forecasting. Science of the Total Environment, 2015, 536, 1029-1037.	8.0	79
8	NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Computational and Structural Biotechnology Journal, 2020, 18, 583-602.	4.1	74
9	Modeling Approaches for Characterizing and Evaluating Environmental Exposure to Engineered Nanomaterials in Support of Risk-Based Decision Making. Environmental Science & Technology, 2013, 47, 1190-1205.	10.0	72
10	Integration among databases and data sets to support productive nanotechnology: Challenges and recommendations. NanoImpact, 2018, 9, 85-101.	4.5	56
11	The Nanomaterial Data Curation Initiative: A collaborative approach to assessing, evaluating, and advancing the state of the field. Beilstein Journal of Nanotechnology, 2015, 6, 1752-1762.	2.8	40
12	Comprehensive Environmental Assessment: A Meta-Assessment Approach. Environmental Science & Technology, 2012, 46, 9202-9208.	10.0	35
13	Harmonizing across environmental nanomaterial testing media for increased comparability of nanomaterial datasets. Environmental Science: Nano, 2020, 7, 13-36.	4.3	32
14	Best practices from nano-risk analysis relevant for other emerging technologies. Nature Nanotechnology, 2019, 14, 998-1001.	31.5	30
15	Nanocuration workflows: Establishing best practices for identifying, inputting, and sharing data to inform decisions on nanomaterials. Beilstein Journal of Nanotechnology, 2015, 6, 1860-1871.	2.8	26
16	Contribution of mesocosm testing to a single-step and exposure-driven environmental risk assessment of engineered nanomaterials. NanoImpact, 2019, 13, 66-69.	4.5	26
17	The role of alternative testing strategies in environmental risk assessment of engineered nanomaterials. Environmental Science: Nano, 2017, 4, 292-301.	4.3	23
18	Advancing Risk Analysis for Nanoscale Materials: Report from an International Workshop on the Role of Alternative Testing Strategies for Advancement. Risk Analysis, 2016, 36, 1520-1537.	2.7	16

#	Article	IF	CITATIONS
19	Quantifying Mechanical Abrasion of MWCNT Nanocomposites Used in 3D Printing: Influence of CNT Content on Abrasion Products and Rate of Microplastic Production. Environmental Science & Technology, 2021, 55, 10332-10342.	10.0	14
20	A web-based tool to engage stakeholders in informing research planning for future decisions on emerging materials. Science of the Total Environment, 2014, 470-471, 660-668.	8.0	12
21	Sex Robots—A Harbinger for Emerging Al Risk. Frontiers in Artificial Intelligence, 2019, 2, 27.	3.4	10
22	Hazardous Spills at Retired Fertilizer Manufacturing Plants Will Continue to Occur in the Absence of Scientific Innovation and Regulatory Enforcement. Environmental Science & Technology, 2021, 55, 16267-16269.	10.0	10
23	Microbial vesicle-mediated communication: convergence to understand interactions within and between domains of life. Environmental Sciences: Processes and Impacts, 2021, 23, 664-677.	3.5	9
24	Visualization tool for correlating nanomaterial properties and biological responses in zebrafish. Environmental Science: Nano, 2016, 3, 1280-1292.	4.3	8
25	MESOCOSM: A mesocosm database management system for environmental nanosafety. NanoImpact, 2021, 21, 100288.	4.5	8
26	Application and testing of risk screening tools for nanomaterial risk analysis. Environmental Science: Nano, 2018, 5, 1844-1858.	4.3	7
27	Bridging international approaches on nanoEHS. Nature Nanotechnology, 2021, 16, 608-611.	31.5	6
28	The NanoInformatics Knowledge Commons: Capturing spatial and temporal nanomaterial transformations in diverse systems. NanoImpact, 2021, 23, 100331.	4.5	5
29	Data dialogues: critical connections for designing and implementing future nanomaterial research. Environment Systems and Decisions, 2015, 35, 76-87.	3.4	4
30	Impacts of ingested MWCNT-Embedded nanocomposites in Japanese medaka (<i>Oryzias latipes</i>). Nanotoxicology, 2021, 15, 1403-1422.	3.0	3
31	Transparent stakeholder engagement in practice: Lessons learned from applying comprehensive environmental assessment to research planning for nanomaterials. Integrated Environmental Assessment and Management, 2014, 10, 498-510.	2.9	2
32	A Nanoinformatics Approach to Safety, Health, Well-Being, and Productivity. , 2018, , 83-117.		2
33	The NSF-EPA Centers for the Environmental Implications of Nanotechnology. , 2018, , 151-168.		0