Olga Fink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6963020/publications.pdf Version: 2024-02-01

		430442	344852
42	1,402	18	36
papers	citations	h-index	g-index
43	43	43	1115
	doce citations	timee ranked	eiting outhors
an docs	does citations	times ranked	ching autions

#	Article	IF	CITATIONS
1	Temporal signals to images: Monitoring the condition of industrial assets with deep learning image processing algorithms. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2022, 236, 617-627.	0.6	18
2	Real-time model calibration with deep reinforcement learning. Mechanical Systems and Signal Processing, 2022, 165, 108284.	4.4	28
3	Fusing physics-based and deep learning models for prognostics. Reliability Engineering and System Safety, 2022, 217, 107961.	5.1	80
4	Maintenance scheduling of manufacturing systems based on optimal price of the network. Reliability Engineering and System Safety, 2022, 217, 108088.	5.1	8
5	Integrating Expert Knowledge With Domain Adaptation for Unsupervised Fault Diagnosis. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-12.	2.4	9
6	Artificial intelligence across company borders. Communications of the ACM, 2022, 65, 34-36.	3.3	4
7	Fully learnable deep wavelet transform for unsupervised monitoring of high-frequency time series. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	21
8	A prescriptive Dirichlet power allocation policy with deep reinforcement learning. Reliability Engineering and System Safety, 2022, 224, 108529.	5.1	5
9	Missing-Class-Robust Domain Adaptation by Unilateral Alignment. IEEE Transactions on Industrial Electronics, 2021, 68, 663-671.	5.2	46
10	Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics. Data, 2021, 6, 5.	1.2	80
11	Uncertainty-Aware Prognosis via Deep Gaussian Process. IEEE Access, 2021, 9, 123517-123527.	2.6	10
12	Interpretable Detection of Partial Discharge in Power Lines with Deep Learning. Sensors, 2021, 21, 2154.	2.1	12
13	Learning to Calibrate Battery Models in Real-Time with Deep Reinforcement Learning. Energies, 2021, 14, 1361.	1.6	17
14	Unsupervised transfer learning for anomaly detection: Application to complementary operating condition transfer. Knowledge-Based Systems, 2021, 216, 106816.	4.0	58
15	Distributed joint dynamic maintenance and production scheduling in manufacturing systems: Framework based on model predictive control and Benders decomposition. Journal of Manufacturing Systems, 2021, 59, 596-606.	7.6	20
16	Contrastive Learning for Fault Detection and Diagnostics in the Context of Changing Operating Conditions and Novel Fault Types. Sensors, 2021, 21, 3550.	2.1	13
17	Implicit supervision for fault detection and segmentation of emerging fault types with Deep Variational Autoencoders. Neurocomputing, 2021, 454, 324-324.	3.5	20
18	Multi-agent maintenance scheduling based on the coordination between central operator and decentralized producers in an electricity market. Reliability Engineering and System Safety, 2021, 210, 107495.	5.1	18

Olga Fink

#	Article	IF	CITATIONS
19	Hierarchical multi-agent predictive maintenance scheduling for trains using price-based approach. Computers and Industrial Engineering, 2021, 159, 107475.	3.4	6
20	Decision support system for an intelligent operator of utility tunnel boring machines. Automation in Construction, 2021, 131, 103880.	4.8	21
21	Feature learning for fault detection in high-dimensional condition monitoring signals. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2020, 234, 104-115.	0.6	15
22	Potential, challenges and future directions for deep learning in prognostics and health management applications. Engineering Applications of Artificial Intelligence, 2020, 92, 103678.	4.3	245
23	Data-Driven Intelligent Predictive Maintenance of Industrial Assets. Women in Engineering and Science, 2020, , 589-605.	0.2	7
24	Off-Policy Reinforcement Learning for Efficient and Effective GAN Architecture Search. Lecture Notes in Computer Science, 2020, , 175-192.	1.0	23
25	Anomaly Detection and Classification in Time Series with Kervolutional Neural Networks. , 2020, , .		1
26	Agent-Based Maintenance Decision Support System for Power Grids Operating in Electricity Markets. , 2020, , .		0
27	Improving generalization of deep fault detection models in the presence of mislabeled data. , 2020, , .		0
28	Domain Adaptive Transfer Learning for Fault Diagnosis. , 2019, , .		69
29	Unsupervised Fault Detection in Varying Operating Conditions. , 2019, , .		12
30	Combined Fault Location and Classification for Power Transmission Lines Fault Diagnosis With Integrated Feature Extraction. IEEE Transactions on Industrial Electronics, 2018, 65, 561-569.	5.2	168
31	Fault detection based on signal reconstruction with Auto-Associative Extreme Learning Machines. Engineering Applications of Artificial Intelligence, 2017, 57, 105-117.	4.3	30
32	Assessment of maintenance strategies for railway vehicles using Petri-nets. Transportation Research Procedia, 2017, 27, 205-214.	0.8	17
33	Online sequential extreme learning machines for fault detection. , 2016, , .		3
34	Two Machine Learning Approaches for Short-Term Wind Speed Time-Series Prediction. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27, 1734-1747.	7.2	124
35	Fuzzy Classification With Restricted Boltzman Machines and Echo-State Networks for Predicting Potential Railway Door System Failures. IEEE Transactions on Reliability, 2015, 64, 861-868.	3.5	24
36	A Classification Framework for Predicting Components' Remaining Useful Life Based on Discrete-Event Diagnostic Data. IEEE Transactions on Reliability, 2015, 64, 1049-1056.	3.5	25

Olga Fink

#	Article	IF	CITATIONS
37	Novelty detection by multivariate kernel density estimation and growing neural gas algorithm. Mechanical Systems and Signal Processing, 2015, 50-51, 427-436.	4.4	21
38	Predicting component reliability and level of degradation with complex-valued neural networks. Reliability Engineering and System Safety, 2014, 121, 198-206.	5.1	92
39	Quantifying the reliability of fault classifiers. Information Sciences, 2014, 266, 65-74.	4.0	8
40	Predicting time series of railway speed restrictions with time-dependent machine learning techniques. Expert Systems With Applications, 2013, 40, 6033-6040.	4.4	18
41	Semi-Markov processes with semi-regenerative states for the availability analysis of chemical process plants with storage units. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2013, 227, 279-289.	0.6	4
42	Predicting Potential Railway Operational Disruptions with Echo State Networks. Transportation Research Record, 2013, 2374, 66-72.	1.0	2