

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6962938/publications.pdf

Version: 2024-02-01

#	Article	lF	CITATIONS
1	Sustainable efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 2018, 336, 160-169.	6.6	449
2	Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chemical Engineering Journal, 2019, 364, 146-159.	6.6	375
3	PEI-grafted magnetic porous powder for highly effective adsorption of heavy metal ions. Desalination, 2011, 281, 278-284.	4.0	292
4	Hierarchical porous biochar from shrimp shell for persulfate activation: A two-electron transfer path and key impact factors. Applied Catalysis B: Environmental, 2020, 260, 118160.	10.8	282
5	Metal-free carbon materials for persulfate-based advanced oxidation process: Microstructure, property and tailoring. Progress in Materials Science, 2020, 111, 100654.	16.0	250
6	Immobilization of laccase on magnetic bimodal mesoporous carbon and the application in the removal of phenolic compounds. Bioresource Technology, 2012, 115, 21-26.	4.8	240
7	Synergistic effect of iron doped ordered mesoporous carbon on adsorption-coupled reduction of hexavalent chromium and the relative mechanism study. Chemical Engineering Journal, 2014, 239, 114-122.	6.6	220
8	Preparation and application of stability enhanced magnetic nanoparticles for rapid removal of Cr(VI). Chemical Engineering Journal, 2011, 175, 222-227.	6.6	183
9	Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chemical Engineering Journal, 2015, 259, 153-160.	6.6	182
10	Insight into highly efficient co-removal of p-nitrophenol and lead by nitrogen-functionalized magnetic ordered mesoporous carbon: Performance and modelling. Journal of Hazardous Materials, 2017, 333, 80-87.	6.5	167
11	Analyses of tetracycline adsorption on alkali-acid modified magnetic biochar: Site energy distribution consideration. Science of the Total Environment, 2019, 650, 2260-2266.	3.9	144
12	Simultaneous removal of lead and phenol contamination from water by nitrogen-functionalized magnetic ordered mesoporous carbon. Chemical Engineering Journal, 2015, 259, 854-864.	6.6	141
13	Synergistic adsorption and reduction of hexavalent chromium using highly uniform polyaniline–magnetic mesoporous silica composite. Chemical Engineering Journal, 2014, 254, 302-312.	6.6	124
14	Highly effective adsorption of cationic and anionic dyes on magnetic Fe/Ni nanoparticles doped bimodal mesoporous carbon. Journal of Colloid and Interface Science, 2015, 448, 451-459.	5.0	113
15	Rapid reductive degradation of aqueous p-nitrophenol using nanoscale zero-valent iron particles immobilized on mesoporous silica with enhanced antioxidation effect. Applied Surface Science, 2015, 333, 220-228.	3.1	89
16	A critical review of volatile fatty acids produced from waste activated sludge: enhanced strategies and its applications. Environmental Science and Pollution Research, 2019, 26, 13984-13998.	2.7	89
17	Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresource Technology, 2011, 102, 10733-10736.	4.8	83
18	Insight into the key factors in fast adsorption of organic pollutants by hierarchical porous biochar. Journal of Hazardous Materials, 2021, 403, 123610.	6.5	82

Ya Pang

#	Article	IF	CITATIONS
19	A critical review on the application of biochar in environmental pollution remediation: Role of persistent free radicals (PFRs). Journal of Environmental Sciences, 2021, 108, 201-216.	3.2	76
20	Enhancement of Pb (II) adsorption by boron doped ordered mesoporous carbon: Isotherm and kinetics modeling. Science of the Total Environment, 2020, 708, 134918.	3.9	58
21	Enhanced ciprofloxacin removal by sludge-derived biochar: Effect of humic acid. Chemosphere, 2019, 231, 495-501.	4.2	53
22	Tailoring biochar for persulfate-based environmental catalysis: Impact of biomass feedstocks. Journal of Hazardous Materials, 2022, 424, 127663.	6.5	53
23	Trace detection of picloram using an electrochemical immunosensor based on three-dimensional gold nanoclusters. Analytical Biochemistry, 2010, 407, 172-179.	1.1	45
24	Analysis of reaction pathways and catalytic sites on metal-free porous biochar for persulfate activation process. Chemosphere, 2020, 261, 127747.	4.2	45
25	Carbon-based magnetic nanocomposite as catalyst for persulfate activation: a critical review. Environmental Science and Pollution Research, 2019, 26, 32764-32776.	2.7	43
26	An electrochemical DNA sensor based on a layers–film construction modified electrode. Analyst, The, 2011, 136, 4204.	1.7	37
27	Activation of persulfate by stability-enhanced magnetic graphene oxide for the removal of 2,4-dichlorophenol. Science of the Total Environment, 2020, 707, 135656.	3.9	30
28	Non-radical oxidation in environmental catalysis: Recognition, identification, and perspectives. Chemical Engineering Journal, 2022, 433, 134385.	6.6	30
29	Removal and Recovery of Zn2+and Pb2+by Imine-Functionalized Magnetic Nanoparticles with Tunable Selectivity. Langmuir, 2012, 28, 468-473.	1.6	27
30	Landfill leachate treatment by coagulation/flocculation combined with microelectrolysis-Fenton processes. Environmental Technology (United Kingdom), 2019, 40, 1862-1870.	1.2	24
31	Highly sensitive fluorescence quantification of picloram using immunorecognition liposome. Talanta, 2010, 83, 210-215.	2.9	21
32	Laccase biosensor using magnetic multiwalled carbon nanotubes and chitosan/silica hybrid membrane modified magnetic carbon paste electrode. Central South University, 2011, 18, 1849-1856.	0.5	20
33	A label–free GR–5DNAzyme sensor for lead ions detection based on nanoporous gold and anionic intercalator. Talanta, 2017, 165, 274-281.	2.9	18
34	Preparation and application of magnetic nitrogen-doped rGO for persulfate activation. Environmental Science and Pollution Research, 2018, 25, 30575-30584.	2.7	17
35	Gold nanoparticles/water-soluble carbon nanotubes/aromatic diamine polymer composite films for highly sensitive detection of cellobiose dehydrogenase gene. Electrochimica Acta, 2011, 56, 4775-4782.	2.6	16
36	Non-Competitive and Competitive Adsorption of Pb2+, Cd2+ and Zn2+ lons onto SDS in Process of Micellar-Enhanced Ultrafiltration. Sustainability, 2018, 10, 92.	1.6	10

Ya Pang

#	Article	IF	CITATIONS
37	Coupling Bioleaching and Electrokinetics to Remediate Heavy Metal Contaminated Soils. Bulletin of Environmental Contamination and Toxicology, 2015, 94, 519-524.	1.3	9
38	Sensitive and renewable picloram immunosensor based on paramagnetic immobilisation. International Journal of Environmental Analytical Chemistry, 2012, 92, 729-741.	1.8	8
39	Activities of laccase produced by a strains Penicillium simplicissimum induced by chemical agentia and UV radiation. Journal of Central South University, 2017, 24, 1953-1958.	1.2	8
40	Magnetic Nanohybrid Materials for Water-Pollutant Removal. , 2019, , 1-30.		7
41	Electrochemical DNA sensor for simultaneous detection of genes encoding two functional enzymes involved in lignin degradation. Biochemical Engineering Journal, 2011, 55, 185-192.	1.8	4
42	Study on Magnetic Chitosan Microparticles for Rapid Removal of Heavy Metals. Advanced Materials Research, 2012, 518-523, 2844-2848.	0.3	2
43	Mesoporous Carbon Based Composites for Removal of Recalcitrant Pollutants From Water. , 2019, , 31-61.		1
44	Mn-Doped Biochar Derived from Sewage Sludge for Ciprofloxacin Degradation. Journal of Environmental Engineering, ASCE, 2022, 148, .	0.7	1