
Yann Boursiac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6962910/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Aquaporins in Plants. Physiological Reviews, 2015, 95, 1321-1358.	28.8	658
2	Early Effects of Salinity on Water Transport in Arabidopsis Roots. Molecular and Cellular Features of Aquaporin Expression. Plant Physiology, 2005, 139, 790-805.	4.8	498
3	ABA transport and transporters. Trends in Plant Science, 2013, 18, 325-333.	8.8	281
4	Stimulusâ€induced downregulation of root water transport involves reactive oxygen speciesâ€activated cell signalling and plasma membrane intrinsic protein internalization. Plant Journal, 2008, 56, 207-218.	5.7	222
5	A PIP1 Aquaporin Contributes to Hydrostatic Pressure-Induced Water Transport in Both the Root and Rosette of Arabidopsis. Plant Physiology, 2010, 152, 1418-1430.	4.8	220
6	Natural Variation of Root Hydraulics in Arabidopsis Grown in Normal and Salt-Stressed Conditions Â. Plant Physiology, 2011, 155, 1264-1276.	4.8	169
7	Regulation of <i>Arabidopsis</i> Leaf Hydraulics Involves Light-Dependent Phosphorylation of Aquaporins in Veins Â. Plant Cell, 2013, 25, 1029-1039.	6.6	158
8	Disruption of the Vacuolar Calcium-ATPases in Arabidopsis Results in the Activation of a Salicylic Acid-Dependent Programmed Cell Death Pathway. Plant Physiology, 2010, 154, 1158-1171.	4.8	111
9	The Role of Plasma Membrane Aquaporins in Regulating the Bundle Sheath-Mesophyll Continuum and Leaf Hydraulics Â. Plant Physiology, 2014, 166, 1609-1620.	4.8	105
10	Expression and Inhibition of Aquaporins in Germinating Arabidopsis Seeds. Plant and Cell Physiology, 2006, 47, 1241-1250.	3.1	99
11	ESKIMO1 Disruption in Arabidopsis Alters Vascular Tissue and Impairs Water Transport. PLoS ONE, 2011, 6, e16645.	2.5	80
12	A Potassium-Dependent Oxygen Sensing Pathway Regulates Plant Root Hydraulics. Cell, 2016, 167, 87-98.e14.	28.9	72
13	AtNPF5.5, a nitrate transporter affecting nitrogen accumulation in Arabidopsis embryo. Scientific Reports, 2015, 5, 7962.	3.3	67
14	Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Scientific Reports, 2019, 9, 4227.	3.3	60
15	The origin and function of calmodulin regulated Ca2+ pumps in plants. Journal of Bioenergetics and Biomembranes, 2007, 39, 409-414.	2.3	58
16	The response of Arabidopsis root water transport to a challenging environment implicates reactive oxygen species- and phosphorylation-dependent internalization of aquaporins. Plant Signaling and Behavior, 2008, 3, 1096-1098.	2.4	53
17	Two chemically distinct root lignin barriers control solute and water balance. Nature Communications, 2021, 12, 2320.	12.8	48
18	Physiological roles of Casparian strips and suberin in the transport of water and solutes. New Phytologist, 2021, 232, 2295-2307.	7.3	33

Yann Boursiac

#	Article	IF	CITATIONS
19	Endosperm turgor pressure decreases during early <i>Arabidopsis</i> seed development. Development (Cambridge), 2016, 143, 3295-9.	2.5	29
20	Functional Characterization of the Arabidopsis Abscisic Acid Transporters NPF4.5 and NPF4.6 in Xenopus Oocytes. Frontiers in Plant Science, 2020, 11, 144.	3.6	20
21	Non-invasive hydrodynamic imaging in plant roots at cellular resolution. Nature Communications, 2021, 12, 4682.	12.8	19
22	Phenotyping and modeling of root hydraulic architecture reveal critical determinants of axial water transport. Plant Physiology, 0, , .	4.8	12
23	Experimental and conceptual approaches to root water transport. Plant and Soil, 2022, 478, 349-370.	3.7	10