
Irina A Kirpich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6962788/publications.pdf Version: 2024-02-01

Ισινίλ Δ. Κισσις μ

#	Article	lF	CITATIONS
1	Hepatic Protein and Phosphoprotein Signatures of Alcohol-Associated Cirrhosis and Hepatitis. American Journal of Pathology, 2022, 192, 1066-1082.	1.9	8
2	Beneficial effects of an endogenous enrichment in n3â€PUFAs on Wnt signaling are associated with attenuation of alcoholâ€mediated liver disease in mice. FASEB Journal, 2021, 35, e21377.	0.2	14
3	Polychlorinated biphenyls altered gut microbiome in CAR and PXR knockout mice exhibiting toxicant-associated steatohepatitis. Toxicology Reports, 2021, 8, 536-547.	1.6	20
4	Linoleic Acidâ€Derived Oxylipins Differentiate Early Stage Alcoholic Hepatitis From Mild Alcoholâ€Associated Liver Injury. Hepatology Communications, 2021, 5, 947-960.	2.0	15
5	lleum Gene Expression in Response to Acute Systemic Inflammation in Mice Chronically Fed Ethanol: Beneficial Effects of Elevated Tissue n-3 PUFAs. International Journal of Molecular Sciences, 2021, 22, 1582.	1.8	5
6	Fat-1 Transgenic Mice With Augmented n3-Polyunsaturated Fatty Acids Are Protected From Liver Injury Caused by Acute-On-Chronic Ethanol Administration. Frontiers in Pharmacology, 2021, 12, 711590.	1.6	7
7	Feeding mice a diet high in oxidized linoleic acid metabolites does not alter liver oxylipin concentrations. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 172, 102316.	1.0	1
8	Human Beta Defensin 2 Ameliorated Alcohol-Associated Liver Disease in Mice. Frontiers in Physiology, 2021, 12, 812882.	1.3	8
9	Mechanisms, biomarkers and targets for therapy in alcohol-associated liver injury: From Genetics to nutrition: Summary of the ISBRA 2018 symposium. Alcohol, 2020, 83, 105-114.	0.8	17
10	Liver disease. , 2020, , 483-502.		1
11	Transcriptional signatures of the small intestinal mucosa in response to ethanol in transgenic mice rich in endogenous n3 fatty acids. Scientific Reports, 2020, 10, 19930.	1.6	3
12	Soluble Epoxide Hydrolase Inhibition in Liver Diseases: A Review of Current Research and Knowledge Gaps. Biology, 2020, 9, 124.	1.3	12
13	Dietary fatty acids and bioactive fatty acid metabolites in alcoholic liver disease. Liver Research, 2019, 3, 206-217.	0.5	20
14	Decreased ω-6:ω-3 PUFA ratio attenuates ethanol-induced alterations in intestinal homeostasis, microbiota, and liver injury. Journal of Lipid Research, 2019, 60, 2034-2049.	2.0	39
15	Introduction to the Virtual Issue "Translational Studies in <scp>AUD</scp> : Liver Diseaseâ€. Alcoholism: Clinical and Experimental Research, 2019, 43, 593-596.	1.4	0
16	Mechanisms of Environmental Contributions to Fatty Liver Disease. Current Environmental Health Reports, 2019, 6, 80-94.	3.2	86
17	Effects of Endogenous ω6:ω3 PUFA Ratio Reduction on Ileum Homeostasis and Liver Injury in Mice Chronically Fed Ethanol. FASEB Journal, 2019, 33, .	0.2	0
18	Decrease of n6/n3 PUFA Ratio Augmented Growth and Improved Markers of Intestinal Barrier Integrity in Small Intestinal Organoids Derived from NaÃ⁻ve and Alcoholâ€Fed Mice. FASEB Journal, 2019, 33, .	0.2	1

IRINA A KIRPICH

#	Article	IF	CITATIONS
19	Ethanol and unsaturated dietary fat induce unique patterns of hepatic ï‰-6 and ï‰-3 PUFA oxylipins in a mouse model of alcoholic liver disease. PLoS ONE, 2018, 13, e0204119.	1.1	25
20	Effects of diets enriched in linoleic acid and its peroxidation products on brain fatty acids, oxylipins, and aldehydes in mice. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2018, 1863, 1206-1213.	1.2	27
21	Rodent Models of Alcoholic Liver Disease: Role of Binge Ethanol Administration. Biomolecules, 2018, 8, 3.	1.8	89
22	Oxidized linoleic acid metabolites induce liver mitochondrial dysfunction, apoptosis, and NLRP3 activation in mice. Journal of Lipid Research, 2018, 59, 1597-1609.	2.0	60
23	Alcohol, microbiome, life style influence alcohol and non-alcoholic organ damage. Experimental and Molecular Pathology, 2017, 102, 162-180.	0.9	40
24	Liver Injury and Endotoxemia in Male and Female Alcoholâ€Dependent Individuals Admitted to an Alcohol Treatment Program. Alcoholism: Clinical and Experimental Research, 2017, 41, 747-757.	1.4	51
25	More Alcohol, More Liver Injury: Not Always True. Alcohol and Alcoholism, 2017, 52, 627-628.	0.9	2
26	Dietary Linoleic Acid and Its Oxidized Metabolites Exacerbate Liver Injury Caused by Ethanol via Induction of Hepatic Proinflammatory Response in Mice. American Journal of Pathology, 2017, 187, 2232-2245.	1.9	55
27	Development, Prevention, and Treatment of Alcohol-Induced Organ Injury: The Role of Nutrition. Alcohol Research: Current Reviews, 2017, 38, 289-302.	1.9	16
28	Alcoholic Liver Disease: Update on the Role of Dietary Fat. Biomolecules, 2016, 6, 1.	1.8	86
29	Saturated and Unsaturated Dietary Fats Differentially Modulate Ethanol-Induced ChangesÂin Gut Microbiome and Metabolome in a Mouse Model of Alcoholic Liver Disease. American Journal of Pathology, 2016, 186, 765-776.	1.9	80
30	Aberrant post-translational protein modifications in the pathogenesis of alcohol-induced liver injury. World Journal of Gastroenterology, 2016, 22, 6192.	1.4	22
31	Alcoholic, Nonalcoholic, and Toxicant-Associated Steatohepatitis: Mechanistic Similarities and Differences. Cellular and Molecular Gastroenterology and Hepatology, 2015, 1, 356-367.	2.3	64
32	The gut microbiome in NAFLD and ALD. Clinical Liver Disease, 2015, 6, 55-58.	1.0	16
33	Gut–liver axis, nutrition, and non-alcoholic fatty liver disease. Clinical Biochemistry, 2015, 48, 923-930.	0.8	233
34	Transient Receptor Potential Vanilloid 1 Gene Deficiency Ameliorates Hepatic Injury in a Mouse Model of Chronic Binge Alcohol-Induced Alcoholic Liver Disease. American Journal of Pathology, 2015, 185, 43-54.	1.9	25
35	Alcoholic and non-alcoholic steatohepatitis. Experimental and Molecular Pathology, 2014, 97, 492-510.	0.9	56
36	Ethanol and dietary unsaturated fat (corn oil/linoleic acid enriched) cause intestinal inflammation and impaired intestinal barrier defense in mice chronically fed alcohol. Alcohol, 2013, 47, 257-264.	0.8	55

IRINA A KIRPICH

#	Article	IF	CITATIONS
37	Lactobacillus rhamnosus GG reduces hepatic TNF $\hat{I}\pm$ production and inflammation in chronic alcohol-induced liver injury. Journal of Nutritional Biochemistry, 2013, 24, 1609-1615.	1.9	149
38	Binge Ethanol-Induced HDAC3 Down-Regulates <i>Cpt1α</i> Expression Leading to Hepatic Steatosis and Injury. Alcoholism: Clinical and Experimental Research, 2013, 37, 1920-1929.	1.4	31
39	Metagenomic Analyses of Alcohol Induced Pathogenic Alterations in the Intestinal Microbiome and the Effect of Lactobacillus rhamnosus GG Treatment. PLoS ONE, 2013, 8, e53028.	1.1	439
40	Ethanol is a Significant Cofactor in HAART Induced Hepatotoxicity. FASEB Journal, 2013, 27, 664.10.	0.2	0
41	Binge Alcohol–Induced Microvesicular Liver Steatosis and Injury are Associated with Downâ€Regulation of Hepatic <scp><i>Hdac</i></scp> <i>1, 7, 9, 10, 11</i> and Upâ€Regulation of <scp><i>Hdac</i></scp> <i>3</i> . Alcoholism: Clinical and Experimental Research, 2012, 36, 1578-1586.	1.4	56
42	Probiotics in the Treatment of the Liver Diseases. Journal of the American College of Nutrition, 2012, 31, 14-23.	1.1	49
43	The Type of Dietary Fat Modulates Intestinal Tight Junction Integrity, Gut Permeability, and Hepatic Tollâ€Like Receptor Expression in a Mouse Model of Alcoholic Liver Disease. Alcoholism: Clinical and Experimental Research, 2012, 36, 835-846.	1.4	109
44	Lactobacillus rhamnosus GG Treatment Potentiates Intestinal Hypoxia-Inducible Factor, Promotes Intestinal Integrity and Ameliorates Alcohol-Induced Liver Injury. American Journal of Pathology, 2011, 179, 2866-2875.	1.9	217
45	Integrated hepatic transcriptome and proteome analysis of mice with high-fat diet-induced nonalcoholic fatty liver disease. Journal of Nutritional Biochemistry, 2011, 22, 38-45.	1.9	154
46	Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol, 2008, 42, 675-682.	0.8	398