Shabaana Abdul Khader

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6962703/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-23 and IL-17 in the establishment of protective pulmonary CD4+ T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology, 2007, 8, 369-377.	7.0	1,253
2	The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunological Reviews, 2008, 226, 191-204.	2.8	549
3	IL-23 Compensates for the Absence of IL-12p70 and Is Essential for the IL-17 Response during Tuberculosis but Is Dispensable for Protection and Antigen-Specific IFN-Î ³ Responses if IL-12p70 Is Available. Journal of Immunology, 2005, 175, 788-795.	0.4	422
4	The development of inducible bronchus-associated lymphoid tissue depends on IL-17. Nature Immunology, 2011, 12, 639-646.	7.0	359
5	Influenza A Inhibits Th17-Mediated Host Defense against Bacterial Pneumonia in Mice. Journal of Immunology, 2011, 186, 1666-1674.	0.4	312
6	Cytokines and Chemokines in <i>Mycobacterium tuberculosis</i> Infection. Microbiology Spectrum, 2016, 4, .	1.2	309
7	IL-12p40: an inherently agonistic cytokine. Trends in Immunology, 2007, 28, 33-38.	2.9	281
8	Interleukin 12p40 is required for dendritic cell migration and T cell priming after Mycobacterium tuberculosis infection. Journal of Experimental Medicine, 2006, 203, 1805-1815.	4.2	276
9	Trained immunity, tolerance, priming and differentiation: distinct immunological processes. Nature Immunology, 2021, 22, 2-6.	7.0	274
10	IL-23 and IL-17 in tuberculosis. Cytokine, 2008, 41, 79-83.	1.4	255
11	Interleukin-17 Is Required for T Helper 1 Cell Immunity and Host Resistance to the Intracellular Pathogen Francisella tularensis. Immunity, 2009, 31, 799-810.	6.6	255
12	Cutting Edge: IFN-Î ³ Regulates the Induction and Expansion of IL-17-Producing CD4 T Cells during Mycobacterial Infection. Journal of Immunology, 2006, 177, 1416-1420.	0.4	249
13	Unexpected Role for IL-17 in Protective Immunity against Hypervirulent Mycobacterium tuberculosis HN878 Infection. PLoS Pathogens, 2014, 10, e1004099.	2.1	222
14	S100A8/A9 Proteins Mediate Neutrophilic Inflammation and Lung Pathology during Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1137-1146.	2.5	216
15	CXCR5+ T helper cells mediate protective immunity against tuberculosis. Journal of Clinical Investigation, 2013, 123, 712-26.	3.9	203
16	Mucosal vaccination with attenuated Mycobacterium tuberculosis induces strong central memory responses and protects against tuberculosis. Nature Communications, 2015, 6, 8533.	5.8	196
17	IL-23 Is Required for Long-Term Control of <i>Mycobacterium tuberculosis</i> and B Cell Follicle Formation in the Infected Lung. Journal of Immunology, 2011, 187, 5402-5407.	0.4	172
18	Responses to acute infection with SARS-CoV-2 in the lungs of rhesus macaques, baboons and marmosets. Nature Microbiology, 2021, 6, 73-86.	5.9	156

#	Article	IF	CITATIONS
19	The role of Th17 cytokines in primary mucosal immunity. Cytokine and Growth Factor Reviews, 2010, 21, 443-448.	3.2	154
20	Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis. Nature, 2019, 570, 528-532.	13.7	153
21	In vivo inhibition of tryptophan catabolism reorganizes the tuberculoma and augments immune-mediated control of <i>Mycobacterium tuberculosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E62-E71.	3.3	150
22	ILâ€23â€dependent ILâ€17 drives Th1â€cell responses following <i>Mycobacterium bovis</i> BCG vaccination. European Journal of Immunology, 2012, 42, 364-373.	1.6	142
23	The DosR Regulon Modulates Adaptive Immunity and Is Essential for <i>Mycobacterium tuberculosis</i> Persistence. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 1185-1196.	2.5	142
24	IL-17 in protective immunity to intracellular pathogens. Virulence, 2010, 1, 423-427.	1.8	141
25	IL-27 Signaling Compromises Control of Bacterial Growth in Mycobacteria-Infected Mice. Journal of Immunology, 2004, 173, 7490-7496.	0.4	129
26	Interleukin-12 and tuberculosis: an old story revisited. Current Opinion in Immunology, 2007, 19, 441-447.	2.4	123
27	CD4 ⁺ T-cell–independent mechanisms suppress reactivation of latent tuberculosis in a macaque model of HIV coinfection. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5636-44.	3.3	123
28	Th17 cytokines in mucosal immunity and inflammation. Current Opinion in HIV and AIDS, 2010, 5, 120-127.	1.5	122
29	In a Murine Tuberculosis Model, the Absence of Homeostatic Chemokines Delays Granuloma Formation and Protective Immunity. Journal of Immunology, 2009, 183, 8004-8014.	0.4	119
30	Profiling Early Lung Immune Responses in the Mouse Model of Tuberculosis. PLoS ONE, 2011, 6, e16161.	1.1	111
31	The immunoregulatory landscape of human tuberculosis granulomas. Nature Immunology, 2022, 23, 318-329.	7.0	110
32	Conserved natural IgM antibodies mediate innate and adaptive immunity against the opportunistic fungus <i>Pneumocystis murina</i> . Journal of Experimental Medicine, 2010, 207, 2907-2919.	4.2	109
33	Th17 cytokines and vaccine-induced immunity. Seminars in Immunopathology, 2010, 32, 79-90.	2.8	102
34	Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nature Communications, 2016, 7, 13894.	5.8	100
35	The immune landscape in tuberculosis reveals populations linked to disease and latency. Cell Host and Microbe, 2021, 29, 165-178.e8.	5.1	98
36	Targeting innate immunity for tuberculosis vaccination. Journal of Clinical Investigation, 2019, 129, 3482-3491.	3.9	95

#	Article	IF	CITATIONS
37	Chemokines in tuberculosis: The good, the bad and the ugly. Seminars in Immunology, 2014, 26, 552-558.	2.7	94
38	Mycobacterium tuberculosis carrying a rifampicin drug resistance mutation reprograms macrophage metabolism through cell wall lipid changes. Nature Microbiology, 2018, 3, 1099-1108.	5.9	90
39	Helminth-induced arginase-1 exacerbates lung inflammation and disease severity in tuberculosis. Journal of Clinical Investigation, 2015, 125, 4699-4713.	3.9	87
40	S100A8/A9 regulates CD11b expression and neutrophil recruitment during chronic tuberculosis. Journal of Clinical Investigation, 2020, 130, 3098-3112.	3.9	85
41	IFN signaling and neutrophil degranulation transcriptional signatures are induced during SARS-CoV-2 infection. Communications Biology, 2021, 4, 290.	2.0	74
42	LAG3 Expression in Active Mycobacterium tuberculosis Infections. American Journal of Pathology, 2015, 185, 820-833.	1.9	70
43	Chemokines shape the immune responses to tuberculosis. Cytokine and Growth Factor Reviews, 2013, 24, 105-113.	3.2	69
44	Old vaccines for new infections: Exploiting innate immunity to control COVID-19 and prevent future pandemics. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	69
45	Yin and yang of interleukin-17 in host immunity to infection. F1000Research, 2017, 6, 741.	0.8	65
46	<i>Mycobacterium tuberculosis</i> Impairs Dendritic Cell Functions through the Serine Hydrolase Hip1. Journal of Immunology, 2014, 192, 4263-4272.	0.4	64
47	Lipocalin 2 Regulates Inflammation during Pulmonary Mycobacterial Infections. PLoS ONE, 2012, 7, e50052.	1.1	59
48	Pneumocystis -Driven Inducible Bronchus-Associated Lymphoid Tissue Formation Requires Th2 and Th17 Immunity. Cell Reports, 2017, 18, 3078-3090.	2.9	57
49	HIV-1 and SIV Infection Are Associated with Early Loss of Lung Interstitial CD4+ T Cells and Dissemination of Pulmonary Tuberculosis. Cell Reports, 2019, 26, 1409-1418.e5.	2.9	54
50	Immune correlates of tuberculosis disease and risk translate across species. Science Translational Medicine, 2020, 12, .	5.8	52
51	Mechanisms of reactivation of latent tuberculosis infection due to SIV coinfection. Journal of Clinical Investigation, 2019, 129, 5254-5260.	3.9	52
52	A Unique Cellular and Molecular Microenvironment Is Present in Tertiary Lymphoid Organs of Patients with Spontaneous Prostate Cancer Regression. Frontiers in Immunology, 2017, 8, 563.	2.2	51
53	Friend or Foe: The Protective and Pathological Roles of Inducible Bronchus-Associated Lymphoid Tissue in Pulmonary Diseases. Journal of Immunology, 2019, 202, 2519-2526.	0.4	51
54	Novel vaccine approaches for protection against intracellular pathogens. Current Opinion in Immunology, 2014, 28, 58-63.	2.4	47

#	Article	IF	CITATIONS
55	A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine, 2017, 35, 4983-4989.	1.7	45
56	Interleukin-17 limits hypoxia-inducible factor $1\hat{l}\pm$ and development of hypoxic granulomas during tuberculosis. JCI Insight, 2017, 2, .	2.3	45
57	<i>Mycobacterium tuberculosis</i> infection induces <i>il12rb1</i> splicing to generate a novel IL-12Rβ1 isoform that enhances DC migration. Journal of Experimental Medicine, 2010, 207, 591-605.	4.2	44
58	Computational Analysis Reveals a Key Regulator of Cryptococcal Virulence and Determinant of Host Response. MBio, 2016, 7, e00313-16.	1.8	43
59	A novel role for C–C motif chemokine receptor 2 during infection with hypervirulent Mycobacterium tuberculosis. Mucosal Immunology, 2018, 11, 1727-1742.	2.7	43
60	Variants in toll-like receptor 9 gene influence susceptibility to tuberculosis in a Mexican population. Journal of Translational Medicine, 2013, 11, 220.	1.8	40
61	S100A8/A9 in COVID-19 pathogenesis: Impact on clinical outcomes. Cytokine and Growth Factor Reviews, 2022, 63, 90-97.	3.2	39
62	Immunometabolism during Mycobacterium tuberculosis Infection. Trends in Microbiology, 2020, 28, 832-850.	3.5	38
63	<i>Yersinia pestis</i> Evades TLR4-dependent Induction of IL-12(p40)2 by Dendritic Cells and Subsequent Cell Migration. Journal of Immunology, 2008, 181, 5560-5567.	0.4	37
64	Mucosal Pre-Exposure to Th17-Inducing Adjuvants Exacerbates Pathology after Influenza Infection. American Journal of Pathology, 2014, 184, 55-63.	1.9	34
65	The protective and pathogenic roles of CXCL17 in human health and disease: Potential in respiratory medicine. Cytokine and Growth Factor Reviews, 2020, 53, 53-62.	3.2	34
66	Chronic Immune Activation in TB/HIV Co-infection. Trends in Microbiology, 2020, 28, 619-632.	3.5	33
67	The current state of animal models and genomic approaches towards identifying and validating molecular determinants of <i>Mycobacterium tuberculosis</i> infection and tuberculosis disease. Pathogens and Disease, 2019, 77, .	0.8	32
68	Clinical and Immunological Factors That Distinguish COVID-19 From Pandemic Influenza A(H1N1). Frontiers in Immunology, 2021, 12, 593595.	2.2	32
69	Antiretroviral therapy does not reduce tuberculosis reactivation in a tuberculosis-HIV coinfection model. Journal of Clinical Investigation, 2020, 130, 5171-5179.	3.9	31
70	Myeloid cell interferon responses correlate with clearance of SARS-CoV-2. Nature Communications, 2022, 13, 679.	5.8	30
71	IL-10 Restrains IL-17 to Limit Lung Pathology Characteristics following Pulmonary Infection with Francisella tularensis Live Vaccine Strain. American Journal of Pathology, 2013, 183, 1397-1404.	1.9	26
72	Therapies for tuberculosis and AIDS: myeloid-derived suppressor cells in focus. Journal of Clinical Investigation, 2020, 130, 2789-2799.	3.9	26

#	Article	IF	CITATIONS
73	Rationalized design of a mucosal vaccine protects against <i>Mycobacterium tuberculosis</i> challenge in mice. Journal of Leukocyte Biology, 2017, 101, 1373-1381.	1.5	25
74	The Tale of IL-12 and IL-23: A Paradigm Shift. Journal of Immunology, 2019, 202, 629-630.	0.4	20
75	Mycobacterium tuberculosis infection drives a type I IFN signature in lung lymphocytes. Cell Reports, 2022, 39, 110983.	2.9	20
76	Mucosal-activated invariant T cells do not exhibit significant lung recruitment and proliferation profiles in macaques in response to infection with Mycobacterium tuberculosis CDC1551. Tuberculosis, 2019, 116, S11-S18.	0.8	17
77	Mycobacterium tuberculosis HN878 Infection Induces Human-Like B-Cell Follicles in Mice. Journal of Infectious Diseases, 2020, 221, 1636-1646.	1.9	15
78	Longitudinal Dynamics of a Blood Transcriptomic Signature of Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 2021, 204, 1463-1472.	2.5	15
79	Francisella tularensis LVS-induced Interleukin-12 p40 cytokine production mediates dendritic cell migration through IL-12 Receptor β1. Cytokine, 2011, 55, 372-379.	1.4	13
80	Vaccines against tuberculosis: moving forward with new concepts. Expert Review of Vaccines, 2013, 12, 829-831.	2.0	13
81	Nonpathologic Infection of Macaques by an Attenuated Mycobacterial Vaccine Is Not Reactivated in the Setting of HIV Co-Infection. American Journal of Pathology, 2017, 187, 2811-2820.	1.9	12
82	Formation of Lung Inducible Bronchus Associated Lymphoid Tissue Is Regulated by Mycobacterium tuberculosis Expressed Determinants. Frontiers in Immunology, 2020, 11, 1325.	2.2	11
83	Lung Epithelial Signaling Mediates Early Vaccine-Induced CD4 ⁺ T Cell Activation and <i>Mycobacterium tuberculosis</i> Control. MBio, 2021, 12, e0146821.	1.8	11
84	Restraining IL-17: Del-1 deals the blow. Nature Immunology, 2012, 13, 433-435.	7.0	10
85	A novel multivalent tuberculosis vaccine confers protection in a mouse model of tuberculosis. Human Vaccines and Immunotherapeutics, 2016, 12, 2649-2653.	1.4	10
86	Cytokines and Chemokines inMycobacterium tuberculosisInfection. , 2017, , 33-72.		10
87	Aspergillus fumigatus Preexposure Worsens Pathology and Improves Control of Mycobacterium abscessus Pulmonary Infection in Mice. Infection and Immunity, 2018, 86, .	1.0	10
88	CXCL17 Is a Specific Diagnostic Biomarker for Severe Pandemic Influenza A(H1N1) That Predicts Poor Clinical Outcome. Frontiers in Immunology, 2021, 12, 633297.	2.2	9
89	Antiretroviral therapy timing impacts latent tuberculosis infection reactivation in a Mycobacterium tuberculosis/SIV coinfection model. Journal of Clinical Investigation, 2022, 132, .	3.9	9
90	Bringing in the Cavalry: IL-26 Mediates Neutrophil Recruitment to the Lungs. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 1079-1080.	2.5	8

#	Article	IF	CITATIONS
91	Response to Hypoxia and the Ensuing Dysregulation of Inflammation Impacts <i>Mycobacterium tuberculosis</i> Pathogenicity. American Journal of Respiratory and Critical Care Medicine, 2022, , .	2.5	8
92	Cryptococcus neoformans Evades Pulmonary Immunity by Modulating Xylose Precursor Transport. Infection and Immunity, 2020, 88, .	1.0	7
93	B Cells Produce CXCL13 in Lymphoid Neogenesis during Chronic Obstructive Pulmonary Disease. The New Kid on the Block?. American Journal of Respiratory and Critical Care Medicine, 2013, 187, 1162-1164.	2.5	6
94	Advances in Cardiovascular Disease Lipid Research Can Provide Novel Insights Into Mycobacterial Pathogenesis. Frontiers in Cellular and Infection Microbiology, 2019, 9, 116.	1.8	6
95	Targeting Unconventional Host Components for Vaccination-Induced Protection Against TB. Frontiers in Immunology, 2020, 11, 1452.	2.2	6
96	Development and Testing of a Spray-Dried Tuberculosis Vaccine Candidate in a Mouse Model. Frontiers in Pharmacology, 2021, 12, 799034.	1.6	6
97	CXCL17 Is Dispensable during Hypervirulent Mycobacterium tuberculosis HN878 Infection in Mice. ImmunoHorizons, 2021, 5, 752-759.	0.8	5
98	HLA Alleles are Genetic Markers for Susceptibility and Resistance towards Leprosy in a Mexican Mestizo Population. Annals of Human Genetics, 2017, 81, 35-40.	0.3	4
99	Phenotype of Peripheral NK Cells in Latent, Active, and Meningeal Tuberculosis. Journal of Immunology Research, 2021, 2021, 1-14.	0.9	4
100	RNA Interference Screening Reveals Host CaMK4 as a Regulator of Cryptococcal Uptake and Pathogenesis. Infection and Immunity, 2017, 85, .	1.0	3
101	Rifampin resistance mutations in the rpoB gene of Enterococcus faecalis impact host macrophage cytokine production. Cytokine, 2022, 151, 155788.	1.4	3
102	Advancing Lung Immunology Research: An Official American Thoracic Society Workshop Report. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, e1-18.	1.4	3
103	Induction of BALT in the absence of IL-17. Nature Immunology, 2012, 13, 2-2.	7.0	2
104	Dancing with the Stars: Phenolic Glycolipids Partners with Macrophages. Cell Host and Microbe, 2017, 22, 249-251.	5.1	1
105	Inflammatory comorbidities: to train or not to train?. Trends in Immunology, 2022, 43, 420-422.	2.9	1
106	TH17 Cytokines in Primary Mucosal Immunity. , 2011, , 243-256.		0
107	Editorial overview: Vaccines: Vaccines for infectious diseases: are we there yet?. Current Opinion in Immunology, 2014, 28, ix-x.	2.4	0

108 IL-17 and mucosal host defense. , 2009, , 149-159.

CITATIONS

#	Article	IF
109	IL-17 and Mucosal Host Defense. , 2013, , 207-218.	